Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38611540

RESUMO

Waterlogging is one of the key abiotic factors that severely impedes the growth and productivity of soybeans on a global scale. To develop soybean cultivars that are tolerant to waterlogging, it is a prerequisite to unravel the mechanisms governing soybean responses to waterlogging. Hence, we explored the morphological, physiological, biochemical, and transcriptional changes in two contrasting soybean introgression lines, A192 (waterlogging tolerant, WT) and A186 (waterlogging sensitive, WS), under waterlogging. In comparison to the WT line, waterlogging drastically decreased the root length (RL), shoot length (ShL), root fresh weight (RFW), shoot fresh weight (ShFW), root dry weight (RDW), and shoot dry weight (ShDW) of the WS line. Similarly, waterlogging inhibited soybean plant growth by suppressing the plant's photosynthetic capacity, enhancing oxidative damage from reactive oxygen species, and decreasing the chlorophyll content in the WS line but not in the WT line. To counteract the oxidative damage and lipid peroxidation, the WT line exhibited increased activity of antioxidant enzymes such as peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT), as well as higher levels of proline content than the WS line. In addition, the expression of antioxidant enzyme genes (POD1, POD2, FeSOD, Cu/ZnSOD, CAT1, and CAT2) and ethylene-related genes (such as ACO1, ACO2, ACS1, and ACS2) were found to be up-regulated in WT line under waterlogging stress conditions. In contrast, these genes showed a down-regulation in their expression levels in the stressed WS line. The integration of morpho-physiological, biochemical, and gene expression analyses provide a comprehensive understanding of the responses of WT and WS lines to waterlogging conditions. These findings would be beneficial for the future development of soybean cultivars that can withstand waterlogging.

2.
BMC Plant Biol ; 21(1): 497, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34715792

RESUMO

BACKGROUND: Seed flooding stress is one of the threatening environmental stressors that adversely limits soybean at the germination stage across the globe. The knowledge on the genetic basis underlying seed-flooding tolerance is limited. Therefore, we performed a genome-wide association study (GWAS) using 34,718 single nucleotide polymorphism (SNPs) in a panel of 243 worldwide soybean collections to identify genetic loci linked to soybean seed flooding tolerance at the germination stage. RESULTS: In the present study, GWAS was performed with two contrasting models, Mixed Linear Model (MLM) and Multi-Locus Random-SNP-Effect Mixed Linear Model (mrMLM) to identify significant SNPs associated with electrical conductivity (EC), germination rate (GR), shoot length (ShL), and root length (RL) traits at germination stage in soybean. With MLM, a total of 20, 40, 4, and 9 SNPs associated with EC, GR, ShL and RL, respectively, whereas in the same order mrMLM detected 27, 17, 13, and 18 SNPs. Among these SNPs, two major SNPs, Gm_08_11971416, and Gm_08_46239716 were found to be consistently connected with seed-flooding tolerance related traits, namely EC and GR across two environments. We also detected two SNPs, Gm_05_1000479 and Gm_01_53535790 linked to ShL and RL, respectively. Based on Gene Ontology enrichment analysis, gene functional annotations, and protein-protein interaction network analysis, we predicted eight candidate genes and three hub genes within the regions of the four SNPs with Cis-elements in promoter regions which may be involved in seed-flooding tolerance in soybeans and these warrant further screening and functional validation. CONCLUSIONS: Our findings demonstrate that GWAS based on high-density SNP markers is an efficient approach to dissect the genetic basis of complex traits and identify candidate genes in soybean. The trait associated SNPs could be used for genetic improvement in soybean breeding programs. The candidate genes could help researchers better understand the molecular mechanisms underlying seed-flooding stress tolerance in soybean.


Assuntos
Adaptação Fisiológica/genética , Desidratação/genética , Inundações , Germinação/genética , Glycine max/genética , Locos de Características Quantitativas , Sementes/genética , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Genes de Plantas , Estudo de Associação Genômica Ampla , Genótipo , Germinação/fisiologia , Fenótipo , Polimorfismo de Nucleotídeo Único , Sementes/fisiologia , Glycine max/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...