Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Psychiatry ; 12: 220, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23216910

RESUMO

BACKGROUND: Numerous structurally unrelated drugs, including antipsychotics, can prolong QT interval and trigger the acquired long QT syndrome (aLQTS). All of them are thought to act at the level of KCNH2, a subunit of the potassium channel. Although the QT-prolonging drugs are proscribed in the subjects with aLQTS, the individual response to diverse QT-prolonging drugs may vary substantially. CASE PRESENTATION: We report here a case of aLQTS in response to small doses of risperidone that was confirmed at three independent drug challenges in the absence of other QT-prolonging drugs. On the other hand, the patient did not respond with QT prolongation to some other antipsychotics. In particular, the administration of clozapine, known to be associated with higher QT-prolongation risk than risperidone, had no effect on QT-length. A detailed genetic analysis revealed no mutations or polymorphisms in KCNH2, KCNE1, KCNE2, SCN5A and KCNQ1 genes. CONCLUSIONS: Our observation suggests that some patients may display a selective aLQTS to a single antipsychotic, without a potassium channel-related genetic substrate. Contrasting with the idea of a common target of the aLQTS-triggerring drugs, our data suggests existence of an alternative target protein, which unlike the KCNH2 would be drug-selective.


Assuntos
Antipsicóticos/efeitos adversos , Síndrome do QT Longo/etiologia , Canais de Potássio/efeitos dos fármacos , Risperidona/efeitos adversos , Esquizofrenia/tratamento farmacológico , Adulto , Clozapina/efeitos adversos , Eletrocardiografia , Feminino , Humanos , Canais de Potássio/genética , Esquizofrenia/genética
2.
Heart Rhythm ; 9(6): 901-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22300664

RESUMO

BACKGROUND: Patients with long QT syndrome (LQTS) have inadequate shortening of the QT interval in response to the sudden heart rate accelerations provoked by standing-a phenomenon of diagnostic value. We now validate our original observations in a cohort twice as large. We also describe that this abnormal QT-interval response persists as the heart rate acceleration returns to baseline. OBJECTIVES: To describe a novel observation, termed "QT stunning" and to validate previous observations regarding the "QT-stretching" phenomenon in patients with LQTS by using our recently described "standing test." METHODS: The electrocardiograms of 108 patients with LQTS and 112 healthy subjects were recorded in the supine position. Subjects were then instructed to stand up quickly and remain standing for 5 minutes during continuous electrocardiographic recording. The corrected QT interval was measured at baseline (QTc(base)), when heart rate acceleration without appropriate QT-interval shortening leads to maximal QT stretching (QTc(stretch)) and upon return of heart rate to baseline (QTc(return)). RESULTS: QTc(stretch) lengthened significantly more in patients with LQTS (103 ± 80 ms vs 66 ± 40 ms in controls; P <.001) and so did QTc(return) (28 ± 48 ms for patients with LQTS vs -3 ± 32 ms for controls; P <.001). Using a sensitivity cutoff of 90%, the specificity for diagnosing LQTS was 74% for QTc(base), 84% for QTc(return), and 87% for QTc(stretch). CONCLUSIONS: The present study extends our previous findings on the abnormal response of the QT interval in response to standing in patients with LQTS. Our study also shows that this abnormal response persists even after the heart rate slows back to baseline.


Assuntos
Eletrocardiografia , Sistema de Condução Cardíaco/fisiopatologia , Frequência Cardíaca/fisiologia , Síndrome do QT Longo/fisiopatologia , Postura , Recuperação de Função Fisiológica/fisiologia , Adulto , Teste de Esforço , Feminino , Seguimentos , Humanos , Síndrome do QT Longo/diagnóstico , Masculino , Curva ROC
4.
Circulation ; 123(23): 2690-700, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21606396

RESUMO

BACKGROUND: Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is an autosomal dominant inherited disease with incomplete penetrance and variable expression. Causative mutations in genes encoding 5 desmosomal proteins are found in ≈50% of ARVD/C index patients. Previous genotype-phenotype relation studies involved mainly overt ARVD/C index patients, so follow-up data on relatives are scarce. METHODS AND RESULTS: One hundred forty-nine ARVD/C index patients (111 male patients; age, 49±13 years) according to 2010 Task Force criteria and 302 relatives from 93 families (282 asymptomatic; 135 male patients; age, 44±13 years) were clinically and genetically characterized. DNA analysis comprised sequencing of plakophilin-2 (PKP2), desmocollin-2, desmoglein-2, desmoplakin, and plakoglobin and multiplex ligation-dependent probe amplification to identify large deletions in PKP2. Pathogenic mutations were found in 87 index patients (58%), mainly truncating PKP2 mutations, including 3 cases with multiple mutations. Multiplex ligation-dependent probe amplification revealed 3 PKP2 exon deletions. ARVD/C was diagnosed in 31% of initially asymptomatic mutation-carrying relatives and 5% of initially asymptomatic relatives of index patients without mutation. Prolonged terminal activation duration was observed more than negative T waves in V(1) to V(3), especially in mutation-carrying relatives <20 years of age. In 45% of screened families, ≥1 affected relatives were identified (90% with mutations). CONCLUSIONS: Pathogenic desmosomal gene mutations, mainly truncating PKP2 mutations, underlie ARVD/C in the majority (58%) of Dutch index patients and even 90% of familial cases. Additional multiplex ligation-dependent probe amplification analysis contributed to discovering pathogenic mutations underlying ARVD/C. Discovering pathogenic mutations in index patients enables those relatives who have a 6-fold increased risk of ARVD/C diagnosis to be identified. Prolonged terminal activation duration seems to be a first sign of ARVD/C in young asymptomatic relatives.


Assuntos
Displasia Arritmogênica Ventricular Direita , Morte Súbita Cardíaca/epidemiologia , Desmossomos/patologia , Família , Adolescente , Adulto , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/mortalidade , Displasia Arritmogênica Ventricular Direita/patologia , Doenças Assintomáticas/mortalidade , Feminino , Seguimentos , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Fenótipo , Valor Preditivo dos Testes , Fatores de Risco , Taquicardia Ventricular/genética , Taquicardia Ventricular/mortalidade , Taquicardia Ventricular/patologia , Fibrilação Ventricular/genética , Fibrilação Ventricular/mortalidade , Fibrilação Ventricular/patologia , Adulto Jovem
5.
Cardiovasc Res ; 67(3): 459-66, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16039271

RESUMO

OBJECTIVE: Congenital long QT syndrome type 3 (LQT3) is an inherited cardiac arrhythmia disorder due to mutations in the cardiac sodium channel gene, SCN5A. Although most LQT3 mutations cause a persistent sodium current, increasing diversity in the disease mechanism is shown. Here we present the electrophysiological properties of the A1330T sodium channel mutation (DIIIS4-S5 linker). Like the A1330P, LQT3 mutation, A1330T, causes LQT3 in the absence of a persistent current. METHODS: A1330T, A1330P and wild-type sodium channels were expressed in HEK-293 cells and characterized using the whole-cell configuration of the patch-clamp technique. RESULTS: The A1330T mutation shifts positively the voltage-dependence of inactivation and speeds recovery from inactivation. Measurements of sodium window (I(Na, window)) currents revealed a positive shift of the I(Na, window) voltage range for both 1330 mutants, with in addition an increase in I(Na, window) magnitude for the A1330P mutant. Action potential (AP) clamp experiments revealed that these changes in I(Na, window) properties cause an increased inward current during the initial part of phase 4 repolarization of the AP. CONCLUSIONS: Our findings indicate that the alanine at position 1330 in the DIIIS4-S5 linker of the cardiac sodium channel has a role in channel fast inactivation. Substitution by a threonine shifts the voltage range of I(Na, window) activity to more positive potentials. Here the counter-acting effect of outward K+ current is reduced and may delay AP repolarization, explaining the LQT3 phenotype.


Assuntos
Alanina/genética , Sequência Conservada , Síndrome do QT Longo/genética , Proteínas Musculares/genética , Canais de Sódio/genética , Adolescente , Adulto , Linhagem Celular , Morte Súbita Cardíaca , Eletrofisiologia , Feminino , Humanos , Ativação do Canal Iônico , Síndrome do QT Longo/metabolismo , Masculino , Proteínas Musculares/metabolismo , Miocárdio/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5 , Técnicas de Patch-Clamp , Linhagem , Estrutura Terciária de Proteína , Canais de Sódio/metabolismo , Transfecção
6.
J Mol Cell Cardiol ; 38(6): 969-81, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15910881

RESUMO

BACKGROUND: Mutations in the gene encoding the human cardiac sodium channel (SCN5A) have been associated with three distinct cardiac arrhythmia disorders: the long QT syndrome, the Brugada syndrome and cardiac conduction disease. Here we report the biophysical features of a novel sodium channel mutation, E161K, which we identified in individuals of two non-related families with symptoms of bradycardia, sinus node dysfunction, generalized conduction disease and Brugada syndrome, or combinations thereof. METHODS AND RESULTS: Wild-type (WT) or E161K sodium channel alpha-subunit and beta-subunit were cotransfected into tsA201 cells to study the functional consequences of mutant sodium channels. Characterization of whole-cell sodium current (I(Na)) using the whole cell patch-clamp technique revealed that the E161K mutation caused an almost threefold reduction in current density (P < 0.001), and an 11.9 mV positive shift of the voltage-dependence of activation (P < 0.0001). The inactivation properties of mutant and WT sodium channels were similar. These results suggest an overall reduction of E161K I(Na). Incorporation of the experimental findings into computational models demonstrate atrial and ventricular conduction slowing as well as a reduction in sinus rate by slowing of the diastolic depolarization rate and upstroke velocity of the sinus node action potential. This reduction in sinus rate was aggravated by application of acetylcholine, simulating the dominant vagal tone during night. CONCLUSION: Our experimental and computational analysis of the E161K mutation suggests that a loss of sodium channel function is not only associated with Brugada syndrome and conduction disease, but may also cause sinus node dysfunction in carriers of this mutation.


Assuntos
Síndrome do Nó Sinusal/genética , Canais de Sódio/genética , Canais de Sódio/fisiologia , Acetilcolina/metabolismo , Adulto , Arritmias Cardíacas/genética , Simulação por Computador , Análise Mutacional de DNA , Eletrocardiografia , Eletrofisiologia , Saúde da Família , Feminino , Genótipo , Haplótipos , Sistema de Condução Cardíaco , Humanos , Síndrome do QT Longo/genética , Masculino , Pessoa de Meia-Idade , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5 , Técnicas de Patch-Clamp , Linhagem , Fenótipo , Síndrome , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...