Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38645210

RESUMO

In neurological conditions affecting the brain, early-stage neural circuit adaption is key for long-term preservation of normal behaviour. We tested if motoneurons and respective microcircuits also adapt in the initial stages of disease progression in a mouse model of progressive motoneuron degeneration. Using a combination of in vitro and in vivo electrophysiology and super-resolution microscopy, we found that, preceding muscle denervation and motoneuron death, recurrent inhibition mediated by Renshaw cells is reduced in half due to impaired quantal size associated with decreased glycine receptor density. Additionally, higher probability of release from proprioceptive Ia terminals leads to increased monosynaptic excitation to motoneurons. Surprisingly, the initial impairment in recurrent inhibition is not a widespread feature of inhibitory spinal circuits, such as group I inhibitory afferents, and is compensated at later stages of disease progression. We reveal that in disease conditions, spinal microcircuits undergo specific multiphasic homeostatic compensations to preserve force output.

2.
Elife ; 112022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36512397

RESUMO

Elaborate behaviours are produced by tightly controlled flexor-extensor motor neuron activation patterns. Motor neurons are regulated by a network of interneurons within the spinal cord, but the computational processes involved in motor control are not fully understood. The neuroanatomical arrangement of motor and premotor neurons into topographic patterns related to their controlled muscles is thought to facilitate how information is processed by spinal circuits. Rabies retrograde monosynaptic tracing has been used to label premotor interneurons innervating specific motor neuron pools, with previous studies reporting topographic mediolateral positional biases in flexor and extensor premotor interneurons. To more precisely define how premotor interneurons contacting specific motor pools are organized, we used multiple complementary viral-tracing approaches in mice to minimize systematic biases associated with each method. Contrary to expectations, we found that premotor interneurons contacting motor pools controlling flexion and extension of the ankle are highly intermingled rather than segregated into specific domains like motor neurons. Thus, premotor spinal neurons controlling different muscles process motor instructions in the absence of clear spatial patterns among the flexor-extensor circuit components.


The spinal cord contains circuits of nerve cells that control how the body moves. Within these networks are interneurons that project to motor neurons, which innervate different types of muscle to contract: flexors (such as the biceps), which bend, or 'flex', the body's joints, and extensors (such as the triceps), which lead to joint extension. These motor signals must be carefully coordinated to allow precise and stable control of the body's movements. Previous studies suggest that where interneurons are placed in the spinal cord depends on whether they activate the motor neurons responsible for flexion or extension. To test if these findings were reproducible, Ronzano, Skarlatou, Barriga, Bannatyne, Bhumbra et al. studied interneurons which flex and extend the ankle joint in mice. In collaboration with several laboratories, the team used a combination of techniques to trace how interneurons and motor neurons were connected in the mouse spinal cord. This revealed that regardless of the method used or the laboratory in which the experiments were performed, the distribution of interneurons associated with flexion and extension overlapped one another. This finding contradicts previously published results and suggests that interneurons in the spinal cord are not segregated based on their outputs. Instead, they may be positioned based on the signals they receive, similar to motor neurons. Understanding where interneurons in the spinal cord are placed will provide new insights on how movement is controlled and how it is impacted by injuries and disease. In the future, this knowledge could benefit work on how neural circuits in the spinal cord are formed and how they can be regenerated.


Assuntos
Interneurônios , Músculos , Medula Espinal , Animais , Camundongos , Interneurônios/fisiologia , Neurônios Motores/fisiologia , Raiva , Medula Espinal/fisiologia
3.
Elife ; 102021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34727018

RESUMO

Motoneurons (MNs) control muscle contractions, and their recruitment by premotor circuits is tuned to produce accurate motor behaviours. To understand how these circuits coordinate movement across and between joints, it is necessary to understand whether spinal neurons pre-synaptic to motor pools have divergent projections to more than one MN population. Here, we used modified rabies virus tracing in mice to investigate premotor interneurons projecting to synergist flexor or extensor MNs, as well as those projecting to antagonist pairs of muscles controlling the ankle joint. We show that similar proportions of premotor neurons diverge to synergist and antagonist motor pools. Divergent premotor neurons were seen throughout the spinal cord, with decreasing numbers but increasing proportion with distance from the hindlimb enlargement. In the cervical cord, divergent long descending propriospinal neurons were found in contralateral lamina VIII, had large somata, were neither glycinergic, nor cholinergic, and projected to both lumbar and cervical MNs. We conclude that distributed spinal premotor neurons coordinate activity across multiple motor pools and that there are spinal neurons mediating co-contraction of antagonist muscles.


We are able to walk, run and move our bodies in other ways thanks to circuits of neurons in the spinal cord that control how and when our muscles contract and relax. Neurons known as premotor neurons receive information from other parts of the central nervous system and control the activities of groups (known as pools) of motor neurons that directly activate individual muscles. To bend a joint or move our limbs, the movement of different muscles needs to be coordinated. Previous studies have focused on how premotor neurons activate a pool of motor neurons to contract a single muscle, but it remains unclear if and how some of these premotor neurons can co-activate different pools of motor neurons to control more than one muscle at the same time. Here, Ronzano, Lancelin et al. injected mice with modified rabies viruses labelled with different fluorescent markers to build a map of the premotor neurons that connect to motor neurons controlling the leg muscles. The experiments revealed that many of the individual premotor neurons in the spinal cords of mice connected to different pools of motor neurons. In the upper region of the spinal cord ­ which is primarily responsible for controlling the front legs ­ some large premotor neurons activated motor neurons in this region as well as other motor neurons in a lower region of the spinal cord that controls the back legs. This suggests that these large premotor neurons may be important for coordinating muscles contraction within and between limbs. Many neurological diseases are associated with difficulties in contracting or relaxing muscles. For example, individuals with a condition called dystonia experience disorganized and excessive muscle contractions that prevent them from being able to bend and straighten their joints properly. By helping us to understand how the body coordinates the activities of multiple limbs at the same time, the findings of Ronzano, Lancelin et al. may lead to new lines of research that ultimately improve the quality of life of patients with dystonia and other similar neurological diseases.


Assuntos
Interneurônios/fisiologia , Neurônios Motores/fisiologia , Movimento , Medula Espinal/fisiologia , Animais , Membro Posterior/fisiologia , Região Lombossacral/fisiologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...