Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984589

RESUMO

With the objective of gaining insight into the modulation of the reduction potential of the Ni(II/I) couple, we have synthesized two mononuclear nickel(II) complexes, NiLen (H2Len = N,N'-bis(3-methoxysalicylidene)-1,2-diamino-2-methylpropane) and NiLpn (H2Lpn = N,N'-bis(3-methoxysalicylidene)-1,3-diamino-2,2-dimethylpropane) of two N2O4 donor ligands and recorded their cyclic voltammograms. Both the nickel complexes show reversible reduction processes for the Ni(II/I) couple in acetonitrile solution but the reduction potential of NiLpn (E1/2 = -1.883 V) is 188 mV more positive than that of NiLen (E1/2 = -2.071 V). In the presence of redox inactive metal ions (Li+, Na+, K+, Mg2+, Ca2+ and Ba2+), the reduction potentials are shifted by 49-331 mV and 99-435 mV towards positive values compared to NiLen and NiLpn, respectively. The shift increases with the decrease of the pKa of the respective aqua-complexes of the metal ion but is poorly co-linear; however, better linearity is found when the shift of the mono- and bi-positive metal ion aqua complexes is plotted separately. Spectrophotometric titrations of these two nickel complexes with the guest metal ions in acetonitrile showed a well-anchored isosbestic point in all cases, confirming the adduct formation of NiLen and NiLpn with the metal ions. Structural analysis of single crystals, [(NiLen)Li(H2O)2]·ClO4 (1), [(NiLpn)Li(H2O)]·ClO4 (2), [(NiLpn)2Na]·BF4 (3) and [(NiLpn)2Ba(H2O)(ClO4)]·ClO4 (4), also corroborates the heterometallic adduct formation. The orbital energies of the optimised heterometallic adducts from which electron transfers originated were calculated in order to explain the observed reduction process. A strong linear connection between the calculated orbital energies and the experimental E1/2 values was observed. According to MEP and 2D vector field plots, the largest shift for divalent metal ions is most likely caused by the local electric field that they impose in addition to Lewis acidity.

2.
Dalton Trans ; 53(23): 9979-9994, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38812408

RESUMO

Herein, we present a dark-green crystalline tetranuclear Cu(II) Schiff base complex {C1 = [Cu4L4](ClO4)4(DMF)4(H2O)} using a N,N,O donor ligand (HL), namely 2-(((2-hydroxypropyl)imino)methyl)-6-methoxyphenol. Spectro-photometrical investigation on the ß-lactamase-like activity of this coordinately saturated system revealed its catalytic inefficiency towards hydrolysis of nitrocefin as a model substrate. This complex has attracted significant interest as a promising photo-catalyst owing to its narrow band gap (2.40 eV) as predicted from DFT calculations and its higher responsivity towards UV light. Therefore, C1 is effectively involved in the photocatalytic reduction of perchlorate to Cl- in the presence of a hole scavenger (H2O-MeOH) under prolonged UV irradiation and itself becomes photo-cleaved to yield a new dark-brown colored chlorobridged dinuclear crystalline complex C2 {[CuL(H2O)2Cl3]H2O}. Furthermore, C2 was deployed as a functional ß-lactamase model and was found to show a remarkable catalytic proficiency towards the hydrolysis of nitrocefin in 70 : 30 (V/V) MeOH-H2O medium. This pro-catalyst C2 has been speculated to generate an aqua bridged active catalyst that plays a crucial factor in hydrolysis. This phenomenon was again experimentally established by potentiometric pH titration where C2 displays only one pKa value (7.11) in the basic pH range, indicating the deprotonation of the bridged water molecule. Based on several other kinetic studies, it may be postulated that the hydrolysis of nitrocefin is initiated by the nucleophilic attack of a bridging hydroxide, followed by very fast protonation of the intermediate to furnish the hydrolyzed product. It is noteworthy that the rate of nitrocefin hydrolysis is greatly inhibited in the presence of external chloride concentration. To the best of our knowledge, this is the first report on the photochemical behavior of such a tetranuclear copper(II) Schiff base complex. Our current interest is focused on inventing a potent ß-lactamase inhibitory therapeutic as well as elucidating its mechanism through comprehensive chemical analysis.


Assuntos
Complexos de Coordenação , Cobre , Teoria da Densidade Funcional , Processos Fotoquímicos , Raios Ultravioleta , beta-Lactamases , Cobre/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , beta-Lactamases/metabolismo , beta-Lactamases/química , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Hidrólise , Resistência Microbiana a Medicamentos , Estrutura Molecular
3.
Dalton Trans ; 53(21): 9171-9182, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38742576

RESUMO

Three new hetero-metallic CuII-LnIII complexes [(CuL)Gd(NO3)3(CH3OH)]n (1), [(CuL)Tb(NO3)3(H2O)]·[CuL] (2) and [(CuL)Dy(NO3)3(H2O)]·[CuL] (3) have been synthesized using a mono-nuclear Cu(II) complex, [CuL], of an unsymmetrically di-condensed N2O3 donor Schiff base ligand, N-(3-methoxysalicylidene)-N-(salicylidene)-1,2-ethylenediamine (H2L). Single crystal X-ray crystallography revealed that complex 1 is a nitrate bridged 1D chain of dinuclear Cu(II)-Gd(III) units whereas in 2 and 3, the dinuclear Cu(II)-Ln(III) units are co-crystallized with a [CuL] unit. The Ln(III) centers are nine coordinated with the geometry of a spherical capped square antiprism for Gd and spherical tricapped trigonal prism for Tb and Dy. The geometry of the Cu(II) center is distorted octahedral for complex 1 and distorted square planar for complexes 2 and 3. Temperature-dependent molar magnetic susceptibility measurements in 1-3 revealed the presence of overall ferromagnetic coupling between the Cu(II) and Ln(III) centers. Notably, field induced single-molecule magnet behavior was witnessed in the Tb(III) derivative (2). The ab initio calculations indicated that upon application of an external magnetic field, the tunneling in the ground state of complex 2 gets reduced and thereby field-induced SMM behaviour is observed. Besides, in the case of complex 1, BS-DFT calculations were carried out to gain further insights into the magnetic exchange coupling interactions between the Cu(II) and Gd(III) centers.

4.
Dalton Trans ; 52(10): 3097-3110, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36786744

RESUMO

The reactivity of biological or synthetic metalloenzymes is modulated in the presence of redox innocent Lewis acidic metal ions as they change the redox potential of the redox active metal ions present in the active site of metalloenzymes. To study this effect, we synthesised a mono-nuclear V(IV) complex (VOL, 1) with an N2O4 donor bicompartmental ligand, characterized it by single-crystal X-ray crystallography and recorded its cyclic voltammogram in acetonitrile. The CV revealed a reversible redox process for the V(IV)/V(V) couple. The potential of the V(IV)/V(V) couple shifted to a more positive value when equivalent amounts of Li+, Na+, K+, Mg2+, Ca2+ and Ba2+ ions were added separately to its acetonitrile solution, but the extent of shift for Li+ and Mg2+ was much less than that of the other metal ions. The guest metal ions except Li+ and Mg2+ were accommodated in the outer compartment of VOL as confirmed by IR and UV-Vis spectral analysis. Single-crystal structural analysis of [(VOL)KPF6]2, (1·K) and [(VOL)Ba(ClO4)2(H2O)]n, (1·Ba) also confirmed the hetero-metallic adduct formation. The correlation of the shift of the V(IV/V) redox potential with the Lewis acidity of respective metal ions deviated appreciably from linearity. DFT calculations suggest that the shift in potential is probably controlled by local electric fields induced by those ions, as indicated by 2D vector electric field maps.

5.
Dalton Trans ; 51(5): 1779-1783, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35076050

RESUMO

Three field induced SMMs built from quasi-isotropic cations like CuII and MnII have been characterized, showing that relatively large clusters with quasi-negligible D and different ground spin states, S = 3/2, 2 or 4, can also exhibit field-induced slow relaxation of magnetization.

6.
Inorg Chem ; 59(21): 15848-15861, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33078932

RESUMO

Four new heterometallic Cu(II)-U(VI) species, [{(CuL1)(CH3CN)}UO2(NO3)2] (1), [{(CuL2)(CH3CN)}UO2(NO3)2] (2), [{(CuL3)(H2O)}UO2(NO3)2] (3), and [UO2(NO3)2(H2O)2]·2[CuL4]·H2O (4), were synthesized using four different metalloligands ([CuL1], [CuL2], [CuL3], and [CuL4], respectively) derived from four unsymmetrically dicondensed N,O-donor Schiff bases. Single-crystal structural analyses revealed that complexes 1, 2, and 3 have a discrete dinuclear [Cu-UO2] core in which one metalloligand, [CuL], is connected to the uranyl moiety via a double phenoxido bridge. Two chelating nitrate ions complete the octa-coordination around uranium. Species 4 is a cocrystal, where a uranyl nitrate dihydrate is sandwiched between two metalloligands [CuL4] by the formation of strong hydrogen bonds between the H atoms of the coordinated water molecules to U(VI) and the O atoms of [CuL4]. Spectrophotometric titrations of these four metalloligands with uranyl nitrate dihydrate in acetonitrile showed a well-anchored isosbestic point between 300 and 500 nm in all cases, conforming with the coordination of [CuL1], [CuL2], [CuL3], and the H-bonding interaction of [CuL4] with UO2(NO3)2. This behavior of [CuL4] was utilized to selectively bind metal ions (e.g., Mg2+, Ca2+, Sr2+, Ba2+, and La3+) in the presence of UO2(NO3)2·2H2O in acetonitrile. The formation of these Cu(II)-U(VI) species in solution was also evaluated by steady-state fluorescence quenching experiments. The difference in the coordination behavior of these metalloligands toward [UO2(NO3)2(H2O)2] was studied by density functional theory calculations. The lower flexibility of the ethylenediamine ring and a large negative binding energy obtained from the evaluation of H bonds and supramolecular interactions between [CuL4] and [UO2(NO3)2(H2O)2] corroborate the formation of cocrystal 4. A very good linear correlation (r2 = 0.9949) was observed between the experimental U═O stretching frequencies and the strength of the equatorial bonds that connect the U atom to the metalloligand.

7.
Dalton Trans ; 49(32): 11268-11281, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32760992

RESUMO

Five new heterometallic Cu(ii)-Mn(ii) discrete trinuclear complexes, [(CuL)2Mn(CH3COO)2] (1), [(CuL)2Mn(NO3)2] (2), [(CuL)2Mn(C6H5COO)(H2O)]Cl (3), [(CuL)2Mn((p-OH)C6H5COO)(H2O)]ClO4 (4) and [(CuL)2Mn(HCOO)(H2O)]ClO4 (5), have been synthesized using a metalloligand, CuL derived from an N2O2 donor Schiff base, H2L (N,N'-bis(α-methylsalicylidene)-1,3-propanediamine). Single-crystal structural analyses reveal that all five complexes have a common [(CuL)2Mn] core, where two terminal metalloligands, CuL, are connected to the central metal ion, Mn(ii), via double phenoxido bridges. Among the complexes, 1 and 2 possess linear structures where the terminal Cu(ii) atoms are bridged to the central Mn(ii) atoms by acetate and nitrate ions, respectively along with the double phenoxido bridges, whereas 3, 4 and 5 have bent structures in which the respective anionic coligands, benzoate, p-hydroxybenzoate and formate ions are coordinated only to central Mn(ii) in monodentate fashion along with a water molecule that completes its hexa-coordinated geometry. Among the complexes, 1, 3, 4 and 5 show quite high bio-mimicking catecholase-like activity for the aerial oxidation of 3,5-di-tert-butylcatechol with turnover numbers (Kcat) of 139 h-1, 439 h-1, 348 h-1 and 730 h-1, respectively, whereas complex 2 is practically inactive towards this reaction. The presence of the coordinated water molecule to Mn(ii) in the bent complexes, 3-5, appears to be responsible for their high catalytic activity and the difference in their activity may be attributed to steric crowding due to the anionic coligand, whereas the inactivity of 2 seems to be associated with the low basicity of the nitrate ion. The temperature-dependent dc molar magnetic susceptibility measurements reveal that complexes 1-5 are antiferromagnetically coupled with the exchange coupling constants (J) = -8.54 cm-1, -11.50 cm-1, -19.83 cm-1, -10.65 cm-1 and -10.27 cm-1 for 1, 2, 3, 4 and 5 respectively as is expected from the Cu-O-Mn bridging angles.


Assuntos
Benzoatos/química , Complexos de Coordenação/química , Cobre/química , Formiatos/química , Manganês/química , Parabenos/química , Ânions/química , Catálise , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Técnicas Eletroquímicas , Ligantes , Modelos Moleculares , Bases de Schiff/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...