Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 39(10): 3760-3770, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32448034

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a novel corona virus that causes corona virus disease 2019 (COVID-19). The COVID-19 rapidly spread across the nations with high mortality rate even as very little is known to contain the virus at present. In the current study, we report novel natural metabolites namely, ursolic acid, carvacrol and oleanolic acid as the potential inhibitors against main protease (Mpro) of COVID-19 by using integrated molecular modeling approaches. From a combination of molecular docking and molecular dynamic (MD) simulations, we found three ligands bound to protease during 50 ns of MD simulations. Furthermore, the molecular mechanic/generalized/Born/Poisson-Boltzmann surface area (MM/G/P/BSA) free energy calculations showed that these chemical molecules have stable and favourable energies causing strong binding with binding site of Mpro protein. All these three molecules, namely, ursolic acid, carvacrol and oleanolic acid, have passed the ADME (Absorption, Distribution, Metabolism, and Excretion) property as well as Lipinski's rule of five. The study provides a basic foundation and suggests that the three phytochemicals, viz. ursolic acid, carvacrol and oleanolic acid could serve as potential inhibitors in regulating the Mpro protein's function and controlling viral replication. Communicated by Ramaswamy H. Sarma.


Assuntos
Proteases 3C de Coronavírus/antagonistas & inibidores , Compostos Fitoquímicos/farmacologia , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Simulação de Acoplamento Molecular
2.
Influenza Other Respir Viruses ; 11(5): 399-403, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28792671

RESUMO

We characterized influenza A(H1N1)pdm09 isolates from large-scale outbreaks that occurred in Nepal and India in early 2015. Although no specific viral features, which may have caused the outbreaks, were identified, an S84N substitution in hemagglutinin was frequently observed. Chronological phylogenetic analysis revealed that these Nepalese and Indian viruses possessing the S84N substitution constitute potential ancestors of the novel genetic subclade 6B.1 virus that spread globally in the following (2015/16) influenza season. Thus, active surveillance of circulating influenza viruses in the Southern Asia region, including Nepal and India, would be beneficial for detecting novel variant viruses prior to their worldwide spread.


Assuntos
Surtos de Doenças , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/epidemiologia , Influenza Humana/virologia , Substituição de Aminoácidos , Ásia/epidemiologia , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Índia/epidemiologia , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/enzimologia , Influenza Humana/etnologia , Masculino , Nepal/epidemiologia , Neuraminidase/genética , Filogenia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...