Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(4): e0283665, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37018233

RESUMO

This study aimed to assess heavy metals in the surface sediments of the Bharalu river, India. Metal concentrations ranged from 6.65-54.6 mg/kg for Ni, 25.2-250.0 mg/kg for Zn, 83.3-139.1 mg/kg for Pb, and 11940.0-31250.0 mg/kg for Fe. The level of metal contamination was assessed using sediment quality guidelines, geo-accumulation index (Igeo), enrichment factor (EF), pollution Load Index (PLI),Nemerow's pollution index (PIN), and potential ecological risk index. Pb exceeded the sediment quality guidelines at all sites indicating a potential threat to the river ecosystem. (Igeo) and EF also showed moderate to severe enrichment for Pb. Potential ecological risk (RI) showed low risk in the sediments, and Pb is the major contributor to ecological risk. Overall, pollution indices revealed comparably higher contamination of the sediments in the downstream sites than in the upstream site. PCA and correlation matrix analysis indicated both anthropogenic and natural origins for metals. Among anthropogenic sources, urban discharges and waste dumping could be mainly attributed to metal contamination in the river sediments. These findings may aid in developing future river management methods explicitly aimed at tackling heavy metal pollution to prevent further damage to the river ecosystem.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Ecossistema , Poluentes Químicos da Água/análise , Chumbo/análise , Sedimentos Geológicos/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Índia , Medição de Risco , China
2.
RSC Adv ; 13(7): 4340-4350, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36744284

RESUMO

Anthropogenic activities accelerate fluoride contamination in groundwater, which largely affects public health. Though biochars have been explored for defluoridation, the plasma technology-based production of biochars has not received as considerable attention as other methods and it is also important that biochars be tested on groundwater samples. In the present study, for the first time, we report the preparation of biochars from different parts of Moringa oleifera using thermal plasma processing and demonstrate fluoride adsorption in both synthetic and contaminated groundwater. Water samples were collected from different locations in Nuapada district of Odisha such as Kotamal-Makardampada (20°24'46''N 82°37'19''E), Pandrapathar (20°34'41''N 82°39'25''E), Karlakot-Kadobhata (20°22'52''N 82°37'24''E), Kotamal-Jhakarpada (20°24'35''N 82°37'20''E), and Dohelpada (20°33'50''N 82°38'57''E). The Moringa leaf samples are processed at 1600 °C for 3 min in an inert atmosphere under a continuous flow of argon to get suitable biochars. The plasma-synthesized biochars contain larger exposed surfaces, which are efficient for the adsorption of fluoride. The prepared biochars were highly porous, amorphous, and contain > 72% carbon, which increases the efficiency of defluoridation due to the surface adsorbate site exposed. XRD of the samples showed the presence of calcium hydroxide, magnesium oxide, and calcium oxide, and large peaks of carbon. Raman data showed the double bond of carbon with oxygen in the form of carbonyl bonds, thioether, and sulfhydryl bonds, which contribute to the protonated site for the adsorption of fluoride, and assist in water penetration and swelling of biochars. The biochar of Moringa oleifera is very efficient for the adsorption of fluoride from standard samples as well as groundwater samples up to a concentration of 6 ppm. Conclusively, the present investigation shows that Moringa oleifera leaves are a good alternative adsorbent that could be used for the removal of fluoride from groundwater samples with > 85% removal in 18 h using 1 g biochar for 100 mL or 10 g biochar for 1 L water containing 4 ppm fluoride. To our knowledge, this is the first report on the thermal plasma-based production of Moringa biochars for the removal of fluoride from drinking water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...