Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38674661

RESUMO

Straw return is an effective agricultural management practice for alleviating soil sickness, but only a few studies have focused on the incorporation of straw with deep plowing and rotary tillage practices in vegetable production. To determine the effects of rice straw return on Chinese cabbage clubroot, a field experiment for three consecutive years in the same area was performed. Soil microbial high-throughput sequencing, quantitative real-time polymerase chain reaction (PCR) and other methods were used to detect Chinese cabbage plant growth, clubroot occurrence, soil chemical properties and soil microbial diversity and abundance. The results showed that straw addition could significantly reduce the clubroot disease incidence. Through Illumina Miseq sequencing, the diversity of the fungi decreased obviously. The relative abundance of the phyla Proteobacteria and Firmicutes was strikingly reduced, while that of Chloroflexi was significantly increased. Redundancy analysis suggests that soil properties may also affect the soil microbial composition; changes in the microbial structure of bacteria and fungi were associated with the available phosphorus. In conclusion, the continuous addition of rice straw can promote the growth and control the occurrence of clubroot, which is closely related to the microbial composition, and the inhibition effect is proportional to the age of addition.

2.
Biotechnol Biofuels Bioprod ; 17(1): 10, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38254224

RESUMO

The development of microalgal biofuels is of significant importance in advancing the energy transition, alleviating food pressure, preserving the natural environment, and addressing climate change. Numerous countries and regions across the globe have conducted extensive research and strategic planning on microalgal bioenergy, investing significant funds and manpower into this field. However, the microalgae biofuel industry has faced a downturn due to the constraints of high costs. In the past decade, with the development of new strains, technologies, and equipment, the feasibility of large-scale production of microalgae biofuel should be re-evaluated. Here, we have gathered research results from the past decade regarding microalgae biofuel production, providing insights into the opportunities and challenges faced by this industry from the perspectives of microalgae selection, modification, and cultivation. In this review, we suggest that highly adaptable microalgae are the preferred choice for large-scale biofuel production, especially strains that can utilize high concentrations of inorganic carbon sources and possess stress resistance. The use of omics technologies and genetic editing has greatly enhanced lipid accumulation in microalgae. However, the associated risks have constrained the feasibility of large-scale outdoor cultivation. Therefore, the relatively controllable cultivation method of photobioreactors (PBRs) has made it the mainstream approach for microalgae biofuel production. Moreover, adjusting the performance and parameters of PBRs can also enhance lipid accumulation in microalgae. In the future, given the relentless escalation in demand for sustainable energy sources, microalgae biofuels should be deemed a pivotal constituent of national energy planning, particularly in the case of China. The advancement of synthetic biology helps reduce the risks associated with genetically modified (GM) microalgae and enhances the economic viability of their biofuel production.

3.
Comput Intell Neurosci ; 2022: 1003243, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35528361

RESUMO

Heilongjiang Province is the main grain producing region in China and an important part of Northeast China Plain, which is one of the three black soil belts in the world. The cultivated region of black soil accounts for 50.6% of the black soil region in Northeast China. Due to the obvious rise of temperature and uneven distribution of precipitation in the 20th century, it has been considered to be one of the important reasons for agricultural drought and aridity. Under the background of climate change, understanding the multiyear changes and occurrence characteristics of cultivated land drought in different agricultural regions in Heilongjiang Province is of great significance for the establishment of agricultural drought prediction and early warning system in the future, guiding agricultural high-standard farmland irrigation in different regions, promoting black soil protection, and then improving grain yield. This paper calculates the temperature vegetation drought index (TVDI) based on the normalized difference vegetation index (NDVI) and surface temperature (TS) product data of MODIS from 2000 to 2021. Taking TVDI as the drought evaluation index, this paper studies the temporal and spatial variation distribution characteristics and occurrence frequency of drought in the whole region and four agricultural regions of Heilongjiang Province: Daxing an Mountain and Xiaoxing an Mountain (region I), Sanjiang Plain (region II), Zhangguangcai Mountains (region III), and Songnen Plain (region IV). The results show that medium drought generally occurred in Heilongjiang Province from 2000 to 2021, accounting for about 70% of the total cultivated land. The drought was severe from 2000 to 2009 and weakened from 2010 to 2021. In the 110 months of the crop growing season from 2000 to 2021, about 63.84% of the region suffered more than 60 droughts. It is found that the frequency of drought varies from region to region. More than 80 droughts occurred in the west of region IV and the middle of region II. The characteristics of region IV are large sandstorm, less precipitation, and lack of water conservancy facilities, resulting in frequent and strong drought. It is also found that the occurrence frequency, degree grade and regional distribution of drought are closely related to seasonal changes. In spring, the occurrence grade and frequency of drought in region IV are the strongest and the drought phenomenon is serious. In autumn, drought is frequent and distributed in all regions, but the grade is not strong (mainly medium drought), and the drought phenomenon is medium. It is humid in summer. Crops in Heilongjiang Province are one crop per annual. Spring drought seriously restricts the water content of crops. Long-term drought will lead to poor crop development and reduce yield. Therefore, only by clarifying the characteristics of regional time drought, monitoring accurate drought events and accurately predicting the occurrence of drought, can we guide high-standard farmland precision irrigation, improve crop yield and ensure national food security. At the same time, severe drought will affect the terrestrial ecosystem, resulting in the distribution of crops and microorganisms, and the transformation between carbon sink and carbon source.


Assuntos
Secas , Ecossistema , China , Solo , Temperatura , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...