Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(5): 2065-2072, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36693004

RESUMO

Fe-mediated nickel organic framework nanoarrays (NiFe-MOFs NAs) on carbon cloth were successfully constructed from ultrathin nanosheets via an etching effect. This strategy also combined the dissolution and coordination effect of acidic ligand (2,6-naphthalenedicarboxylic acid, NDC) to a self-sacrificial template of Ni(OH)2 NAs. Benefiting from the strong Fe etching effect, dense and thick brick-like Ni-NDC nanoplates were tailored into loose and ultrathin NiFe-NDC nanosheets with abundant squamous nanostructures, which were still tightly attached to carbon cloth. As a consequence, more coordinatively unsaturated metal sites (CUMSs) that served as active centers were exposed to accelerate oxygen production. Meanwhile, the electronic structure of active Ni centers was modulated by the incorporation of Fe atoms. The charge density redistribution between Ni and Fe ultimately optimized the energy barrier of the adsorption/desorption of oxygenated intermediates, promoting the kinetics for water oxidation.

2.
Bioresour Technol ; 183: 10-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25710678

RESUMO

The continual growth in commercial aviation fuels and more strict environmental legislations have led to immense interest in developing green aviation fuels from biomass. This paper demonstrated a controllable transformation of lignin into jet and diesel fuel range hydrocarbons, involving directional production of C8-C15 aromatics by the catalytic depolymerization of lignin into C6-C8 low carbon aromatic monomers coupled with the alkylation of aromatics, and the directional production of C8-C15 cycloparaffins by the hydrogenation of aromatics. The key step, the production of the desired C8-C15 aromatics with the selectivity up to 94.3%, was achieved by the low temperature alkylation reactions of the lignin-derived monomers using ionic liquid. The synthetic biofuels basically met the main technical requirements of conventional jet fuels. The transformation potentially provides a useful way for the development of cycloparaffinic and aromatic components in jet fuels using renewable lignocellulose biomass.


Assuntos
Biocombustíveis , Biomassa , Cicloparafinas/química , Gasolina , Lignina/química , Alcanos/química , Alquilação , Catálise , Hidrogenação , Líquidos Iônicos/química , Polimerização , Reciclagem , Temperatura
3.
Bioresour Technol ; 143: 59-67, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23777846

RESUMO

Transformation of lignin to ethylbenzene can provide an important bulk raw material for the petrochemical industry. This work explored the production of ethylbenzene from lignin through the directional catalytic depolymerization of lignin into the aromatic monomers followed by the selective alkylation of the aromatic monomers. For the first step, the aromatics selectivity of benzene derived from the catalytic depolymerization of lignin reached about 90.2 C-mol% over the composite catalyst of Re-Y/HZSM-5 (25). For the alkylation of the aromatic monomers in the second step, the highest selectivity of ethylbenzene was about 72.3 C-mol% over the HZSM-5 (25) catalyst. The reaction pathway for the transformation of lignin to ethylbenzene was also addressed. Present transformation potentially provides a useful approach for the production of the basic petrochemical material and development of high-end chemicals utilizing lignin as the abundant natural aromatic resource.


Assuntos
Derivados de Benzeno/síntese química , Lignina/química , Biomassa , Catálise , Polímeros/química
4.
Bioresour Technol ; 136: 222-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23567684

RESUMO

Biomass conversion into benzene, toluene and xylenes (BTX) can provide basic feedstocks for the petrochemical industry, which also serve as the most important aromatic platform molecules for development of high-end chemicals. Present work explored a new route for transformation of bio-oil tar into BTX through current-enhanced catalytic conversion (CECC), involving the synergistic effect between the zeolite catalyst and current to promote the deoxygenation and cracking reactions. The proposed transformation shows an excellent BTX aromatics selectivity of 92.9 C-mol% with 25.1 wt.% yield at 400 °C over usual HZSM-5 catalyst. The study of the model compounds revealed that the groups such as methoxy, hydroxyl and methyl in aromatics can be effectively removed in the CECC process. Present transformation potentially provides an important approach for production of the key petrochemicals of BTX and the overall use of bio-oil tar derived from bio-oil or biomass.


Assuntos
Biocombustíveis , Eletricidade , Hidrocarbonetos Aromáticos/metabolismo , Alcatrões/metabolismo , Reatores Biológicos , Catálise , Temperatura , Zeolitas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...