Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Bioengineering (Basel) ; 11(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38534485

RESUMO

B0 field inhomogeneity is a long-lasting issue for Cardiac MRI (CMR) in high-field (3T and above) scanners. The inhomogeneous B0 fields can lead to corrupted image quality, prolonged scan time, and false diagnosis. B0 shimming is the most straightforward way to improve the B0 homogeneity. However, today's standard cardiac shimming protocol requires manual selection of a shim volume, which often falsely includes regions with large B0 deviation (e.g., liver, fat, and chest wall). The flawed shim field compromises the reliability of high-field CMR protocols, which significantly reduces the scan efficiency and hinders its wider clinical adoption. This study aims to develop a dual-channel deep learning model that can reliably contour the cardiac region for B0 shim without human interaction and under variable imaging protocols. By utilizing both the magnitude and phase information, the model achieved a high segmentation accuracy in the B0 field maps compared to the conventional single-channel methods (Dice score: 2D-mag = 0.866, 3D-mag = 0.907, and 3D-mag-phase = 0.938, all p < 0.05). Furthermore, it shows better generalizability against the common variations in MRI imaging parameters and enables significantly improved B0 shim compared to the standard method (SD(B0Shim): Proposed = 15 ± 11% vs. Standard = 6 ± 12%, p < 0.05). The proposed autonomous model can boost the reliability of cardiac shimming at 3T and serve as the foundation for more reliable and efficient high-field CMR imaging in clinical routines.

2.
Acad Radiol ; 31(4): 1643-1654, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177034

RESUMO

RATIONALE AND OBJECTIVES: The absence of published reference values for multilayer-specific strain measurement using cardiac magnetic resonance (CMR) in young healthy individuals limits its use. This study aimed to establish normal global and layer-specific strain values in healthy children and young adults using a deformable registration algorithm (DRA). MATERIALS AND METHODS: A retrospective study included 131 healthy children and young adults (62 males and 69 females) with a mean age of 16.6 ± 3.9 years. CMR examinations were conducted using 1.5T scanners, and strain analysis was performed using TrufiStrain research prototype software (Siemens Healthineers, Erlangen, Germany). Global and layer-specific strain parameters were extracted from balanced Steady-state free precession cine images. Statistical analyses were conducted to evaluate the impact of demographic variables on strain measurements. RESULTS: The peak global longitudinal strain (LS) was -16.0 ± 3.0%, peak global radial strain (RS) was 29.9 ± 6.3%, and peak global circumferential strain (CS) was -17.0 ± 1.8%. Global LS differed significantly between males and females. Transmural strain analysis showed a consistent pattern of decreasing LS and CS from endocardium to epicardium, while radial strain increased. Basal-to-apical strain distribution exhibited decreasing LS and increasing CS in both global and layer-specific analysis. CONCLUSION: This study uses DRA to provide reference values for global and layer-specific strain in healthy children and young adults. The study highlights the impact of sex and age on LS and body mass index on RS. These insights are vital for future cardiac assessments in children, particularly for early detection of heart diseases.


Assuntos
Inteligência Artificial , Imagem Cinética por Ressonância Magnética , Masculino , Feminino , Criança , Humanos , Adulto Jovem , Adolescente , Adulto , Imagem Cinética por Ressonância Magnética/métodos , Estudos Retrospectivos , Ventrículos do Coração , Imageamento por Ressonância Magnética/métodos , Função Ventricular Esquerda
3.
Quant Imaging Med Surg ; 14(1): 736-748, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38223028

RESUMO

Background: Epicardial adipose tissue (EAT) contributes to inflammation and fibrosis of the neighboring myocardial tissue via paracrine signaling. In this retrospective study, we investigated the abnormal changes in the amount of EAT in male children with Duchenne muscular dystrophy (DMD) using cardiac magnetic resonance (CMR) imaging. Furthermore, we constructed and validated a nomogram including EAT-related CMR imaging parameter for predicting the occurrence of myocardial fibrosis in patients with DMD. Methods: This study enrolled 283 patients with DMD and 57 healthy participants who underwent CMR acquisitions to measure the quantitative parameters of EAT, pericardial adipose tissue (PAT), paracardial adipose tissue, and subcutaneous adipose tissue. Late gadolinium enhancement (LGE) was performed to confirm myocardial fibrosis in patients with DMD. The DMD group consisted of 200 patients from institution 1 (the ratio of the training set and the internal validation set was 7:3) and 83 patients from four other institutions (the external validation set). Logistic and least absolute shrinkage and selection operator (LASSO) regression was used to select the optimal predictors and to develop and validate the nomogram model predicting LGE risk in the training set, internal validation set, and external validation set. Results: Compared with those in healthy controls, some regional EAT thicknesses, areas, and global volumes were significantly higher in patients with DMD, and 41.7% of patients with DMD showed positive LGE. These LGE-positive patients with DMD showed significantly higher EAT volume (median 23.9 mL/m3; P<0.001) and PAT volume (median 31.8 mL/m3; P<0.001) compared with the LGE-negative patients with DMD. Age [odds ratio (OR) 2.0; P<0.001], body fat percentage (OR 1.3; P<0.001), and EAT volume (OR 1.4; P<0.001) were independently associated with positive LGE in the training set. The interactive dynamic nomogram showed superior prediction performance, with a high degree of the calibration, discrimination, and clinical net benefit in the training and validation of the DMD datasets. The area under the curve (AUC) values of the nomogram in the training set, internal validation set, and external validation set were 0.95 [95% confidence interval (CI): 0.91-0.98], 0.97 (95% CI: 0.92-0.99), and 0.95 (95% CI: 0.91-0.99), respectively. Conclusions: The onset of LGE-based myocardial fibrosis was associated with EAT volume in patients with DMD. Additionally, the nomogram with EAT volumes showed superior performance in patients with DMD for predicting the occurrence of myocardial fibrosis.

4.
Radiology ; 307(5): e222878, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37249435

RESUMO

Background Cardiac cine can benefit from deep learning-based image reconstruction to reduce scan time and/or increase spatial and temporal resolution. Purpose To develop and evaluate a deep learning model that can be combined with parallel imaging or compressed sensing (CS). Materials and Methods The deep learning model was built on the enhanced super-resolution generative adversarial inline neural network, trained with use of retrospectively identified cine images and evaluated in participants prospectively enrolled from September 2021 to September 2022. The model was applied to breath-hold electrocardiography (ECG)-gated segmented and free-breathing real-time cine images collected with reduced spatial resolution with use of generalized autocalibrating partially parallel acquisitions (GRAPPA) or CS. The deep learning model subsequently restored spatial resolution. For comparison, GRAPPA-accelerated cine images were collected. Diagnostic quality and artifacts were evaluated by two readers with use of Likert scales and compared with use of Wilcoxon signed-rank tests. Agreement for left ventricle (LV) function, volume, and strain was assessed with Bland-Altman analysis. Results The deep learning model was trained on 1616 patients (mean age ± SD, 56 years ± 16; 920 men) and evaluated in 181 individuals, 126 patients (mean age, 57 years ± 16; 77 men) and 55 healthy subjects (mean age, 27 years ± 10; 15 men). In breath-hold ECG-gated segmented cine and free-breathing real-time cine, the deep learning model and GRAPPA showed similar diagnostic quality scores (2.9 vs 2.9, P = .41, deep learning vs GRAPPA) and artifact score (4.4 vs 4.3, P = .55, deep learning vs GRAPPA). Deep learning acquired more sections per breath-hold than GRAPPA (3.1 vs one section, P < .001). In free-breathing real-time cine, the deep learning showed a similar diagnostic quality score (2.9 vs 2.9, P = .21, deep learning vs GRAPPA) and lower artifact score (3.9 vs 4.3, P < .001, deep learning vs GRAPPA). For both sequences, the deep learning model showed excellent agreement for LV parameters, with near-zero mean differences and narrow limits of agreement compared with GRAPPA. Conclusion Deep learning-accelerated cardiac cine showed similarly accurate quantification of cardiac function, volume, and strain to a standardized parallel imaging method. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Vannier and Wang in this issue.


Assuntos
Imagem Cinética por Ressonância Magnética , Imageamento por Ressonância Magnética , Masculino , Humanos , Pessoa de Meia-Idade , Adulto , Estudos Retrospectivos , Imagem Cinética por Ressonância Magnética/métodos , Função Ventricular Esquerda , Suspensão da Respiração , Redes Neurais de Computação , Reprodutibilidade dos Testes
5.
Magn Reson Med ; 90(1): 222-230, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36864561

RESUMO

PURPOSE: To investigate the feasibility of combining simultaneous multislice (SMS) and region-optimized virtual coils (ROVir) for single breath-hold CINE imaging. METHOD: ROVir is a recent virtual coil approach that allows reduced-field of view (FOV) imaging by localizing the signal from a region-of-interest (ROI) and/or suppressing the signal from unwanted spatial regions. In this work, ROVir is used for reduced-FOV SMS bSSFP CINE imaging, which enables whole heart CINE with a single breath-hold acquisition. RESULTS: Reduced-FOV CINE with either SMS-only or ROVir-only resulted in significant aliasing, with severely reduced image quality when compared to the full FOV reference CINE, while the visual appearance of aliasing was substantially reduced with the proposed SMS+ROVir. The end diastolic volume, end systolic volume, and ejection fraction obtained using the proposed approach were similar to the clinical reference (correlations of 0.92, 0.94, and 0.88, respectively with p < 0 . 05 $$ p<0.05 $$ in each case, and biases of 0.1, 1.6 mL, and - 0 . 6 % $$ -0.6\% $$ , respectively). No statistically significant differences for these parameters were found with a Wilcoxon rank test (p = 0.96, 0.20, and 0.40, respectively). CONCLUSION: We demonstrated that reduced-FOV CINE imaging with SMS+ROVir enables single breath-hold whole-heart imaging without compromising visual image quality or quantitative cardiac function parameters.


Assuntos
Suspensão da Respiração , Imagem Cinética por Ressonância Magnética , Imagem Cinética por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Interpretação de Imagem Assistida por Computador/métodos
6.
J Magn Reson Imaging ; 57(6): 1752-1763, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36148924

RESUMO

BACKGROUND: 4D Flow MRI is a quantitative imaging technique to evaluate blood flow patterns; however, it is unclear how compressed sensing (CS) acceleration would impact aortic hemodynamic quantification in type B aortic dissection (TBAD). PURPOSE: To investigate CS-accelerated 4D Flow MRI performance compared to GRAPP-accelerated 4D Flow MRI (GRAPPA) to evaluate aortic hemodynamics in TBAD. STUDY TYPE: Prospective. POPULATION: Twelve TBAD patients, two volunteers. FIELD STRENGTH/SEQUENCE: 1.5T, 3D time-resolved cine phase-contrast gradient echo sequence. ASSESSMENT: GRAPPA (acceleration factor [R] = 2) and two CS-accelerated (R = 7.7 [CS7.7] and 10.2 [CS10.2]) 4D Flow MRI scans were acquired twice for interscan reproducibility assessment. Voxelwise kinetic energy (KE), peak velocity (PV), forward flow (FF), reverse flow (RF), and stasis were calculated. Plane-based mid-lumen flows were quantified. Imaging times were recorded. TESTS: Repeated measures analysis of variance, Pearson correlation coefficients (r), intraclass correlation coefficients (ICC). P < 0.05 indicated statistical significance. RESULTS: The KE and FF in true lumen (TL) and PV in false lumen (FL) did not show difference among three acquisition types (P = 0.818, 0.065, 0.284 respectively). The PV and stasis in TL were higher, KE, FF, and RF in FL were lower, and stasis was higher in GRAPPA compared to CS7.7 and CS10.2. The RF was lower in GRAPPA compared to CS10.2. The correlation coefficients were strong in TL (r = [0.781-0.986]), and low to strong in FL (r = [0.347-0.948]). The ICC levels demonstrated moderate to excellent interscan reproducibility (0.732-0.989). The FF and net flow in mid-descending aorta TL were significantly different between CS7.7 and CS10.2. CONCLUSION: CS-accelerated 4D Flow MRI has potential for clinical utilization with shorter scan times in TBAD. Our results suggest similar hemodynamic trends between acceleration types, but CS-acceleration impacts KE, FF, RF, and stasis more in FL. EVIDENCE LEVEL: 1 Technical Efficacy: Stage 2.


Assuntos
Dissecção Aórtica , Angiografia por Ressonância Magnética , Humanos , Angiografia por Ressonância Magnética/métodos , Estudos Prospectivos , Reprodutibilidade dos Testes , Velocidade do Fluxo Sanguíneo/fisiologia , Imageamento por Ressonância Magnética/métodos , Dissecção Aórtica/diagnóstico por imagem , Hemodinâmica , Imageamento Tridimensional/métodos
7.
J Cardiovasc Magn Reson ; 24(1): 6, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34986850

RESUMO

PURPOSE: To develop and evaluate MyoMapNet, a rapid myocardial T1 mapping approach that uses fully connected neural networks (FCNN) to estimate T1 values from four T1-weighted images collected after a single inversion pulse in four heartbeats (Look-Locker, LL4). METHOD: We implemented an FCNN for MyoMapNet to estimate T1 values from a reduced number of T1-weighted images and corresponding inversion-recovery times. We studied MyoMapNet performance when trained using native, post-contrast T1, or a combination of both. We also explored the effects of number of T1-weighted images (four and five) for native T1. After rigorous training using in-vivo modified Look-Locker inversion recovery (MOLLI) T1 mapping data of 607 patients, MyoMapNet performance was evaluated using MOLLI T1 data from 61 patients by discarding the additional T1-weighted images. Subsequently, we implemented a prototype MyoMapNet and LL4 on a 3 T scanner. LL4 was used to collect T1 mapping data in 27 subjects with inline T1 map reconstruction by MyoMapNet. The resulting T1 values were compared to MOLLI. RESULTS: MyoMapNet trained using a combination of native and post-contrast T1-weighted images had excellent native and post-contrast T1 accuracy compared to MOLLI. The FCNN model using four T1-weighted images yields similar performance compared to five T1-weighted images, suggesting that four T1 weighted images may be sufficient. The inline implementation of LL4 and MyoMapNet enables successful acquisition and reconstruction of T1 maps on the scanner. Native and post-contrast myocardium T1 by MOLLI and MyoMapNet was 1170 ± 55 ms vs. 1183 ± 57 ms (P = 0.03), and 645 ± 26 ms vs. 630 ± 30 ms (P = 0.60), and native and post-contrast blood T1 was 1820 ± 29 ms vs. 1854 ± 34 ms (P = 0.14), and 508 ± 9 ms vs. 514 ± 15 ms (P = 0.02), respectively. CONCLUSION: A FCNN, trained using MOLLI data, can estimate T1 values from only four T1-weighted images. MyoMapNet enables myocardial T1 mapping in four heartbeats with similar accuracy as MOLLI with inline map reconstruction.


Assuntos
Aprendizado Profundo , Coração , Frequência Cardíaca , Humanos , Imageamento por Ressonância Magnética , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
8.
Magn Reson Med ; 87(1): 120-137, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34418152

RESUMO

PURPOSE: To develop a 3D multitasking multi-echo (MT-ME) technique for the comprehensive characterization of liver tissues with 5-min free-breathing acquisition; whole-liver coverage; a spatial resolution of 1.5 × 1.5 × 6 mm3 ; and simultaneous quantification of T1 , water-specific T1 (T1w ), proton density fat fraction (PDFF), and R2∗ . METHODS: Six-echo bipolar spoiled gradient echo readouts following inversion recovery preparation was performed to generate T1 , water/fat, and R2∗ contrast. MR multitasking was used to reconstruct the MT-ME images with 3 spatial dimensions: 1 T1 recovery dimension, 1 multi-echo dimension, and 1 respiratory dimension. A basis function-based approach was developed for T1w quantification, followed by the estimation of R2∗ and T1 -corrected PDFF. The intrasession repeatability and agreement against references of MT-ME measurements were tested on a phantom and 15 clinically healthy subjects. In addition, 4 patients with confirmed liver diseases were recruited, and the agreement between MT-ME measurements and references was assessed. RESULTS: MT-ME produced high-quality, coregistered T1 , T1w , PDFF, and R2∗ maps with good intrasession repeatability and substantial agreement with references on phantom and human studies. The intra-class coefficients of T1 , T1w , PDFF, and R2∗ from the repeat MT-ME measurements on clinically healthy subjects were 0.989, 0.990, 0.999, and 0.988, respectively. The intra-class coefficients of T1 , PDFF, and R2∗ between the MT-ME and reference measurements were 0.924, 0.987, and 0.975 in healthy subjects and 0.980, 0.999, and 0.998 in patients. The T1w was independent to PDFF (R = -0.029, P = .904). CONCLUSION: The proposed MT-ME technique quantifies T1 , T1w , PDFF, and R2∗ simultaneously and is clinically promising for the comprehensive characterization of liver tissue properties.


Assuntos
Prótons , Água , Humanos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Reprodutibilidade dos Testes
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4982-4985, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892326

RESUMO

Magnetic Resonance Imaging (MRI) access remains conditional to patients with conductive medical implants, as RF heating generated around the implant during scanning may cause tissue burns. Experiments have been traditionally used to assess this heating, but they are time-consuming and expensive, and in many cases cannot faithfully replicate the in-vivo scenario. Alternatively, ISO TS 10974 outlines a four-tier RF heating assessment approach based on a combination of experiments and full-wave electromagnetic (EM) simulations with varying degrees of complexity. From these, Tier 4 approach relies entirely on EM simulations. There are, however, very few studies validating such numerical models against direct thermal measurements. In this work, we evaluated the agreement between simulated and measured RF heating around wire implants during RF exposure at 63.6 MHz (proton imaging at 1.5 T). Heating was assessed around wire implants with 25 unique trajectories within an ASTM phantom. The root mean square percentage error (RMSPE) of simulated vs. measured RF heating remained <1.6% despite the wide range of observed heating (0.2 °C-53 °C). Our results suggest that good agreement can be achieved between experiments and simulations as long as important experimental features such as characteristics of the MRI RF coil, implant's geometry, position, and trajectory, as well as electric and thermal properties of gel are closely mimicked in simulations.Clinical Relevance- This work validates the application of full-wave EM simulations for modeling and predicting RF heating of conductive wires in an MRI environment, providing researchers with a validated tool to assess MRI safety in patients with implants.


Assuntos
Calefação , Temperatura Alta , Humanos , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Ondas de Rádio
10.
BMC Cardiovasc Disord ; 21(1): 580, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876015

RESUMO

BACKGROUND AND PURPOSE: Conventional cardiac magnetic resonance (CCMR) imaging is usually performed with breath-holding (BH), which is adverse in patients with BH limitations. We explored the ability of a free-breathing CMR (fCMR) protocol to prognosticate in patients with coronary heart diseases (CHD) and limited BH ability. METHODS: Sixty-seven patients with CHD and limited BH abilities were prospectively enrolled in this study. All patients underwent comprehensive fCMR imaging at 3.0 T. The fCMR protocols included compressed sensing (CS) single-shot cine acceleration imaging, and motion-corrected (MOCO), single-shot late gadolinium enhancement (LGE) imaging. Image quality (IQ) of the cine and LGE images was evaluated based on the 5-point Likert scale. The value of fMRI in providing a prognosis in patients with CHD was assessed. Statistical methods included the T test, Mann-Whitney test, Kappa test, Kaplan-Meier curve, Log-rank test, Cox proportional hazard regression analysis, and receiver operating characteristic curves. RESULTS: All IQ scores of the short axis CS-cine and both the short and long axes MOCO LGE images were ≥ 3 points. Over a median follow-up of 31 months (range 3.8-38.2), 25 major adverse cardiovascular events (MACE) occurred. In the univariate analysis, infarction size (IS), left ventricular ejection fraction (LVEF), 3D-Global peak longitudinal strain (3D-GPLS), heart failure classification were significantly associated with MACE. When the significantly univariate MACE predictors, added to the multivariate analysis, which showed IS (HR 1.02; 95% CI 1.00-1.05; p = 0.048) and heart failure with preserved EF (HR 0.20; 95% CI 0.04-0.98; p = 0.048) correlated positively with MACE. The optimal cutoff value for LVEF, 3D-GPLS, and IS in predicting MACE was 34.2%, - 5.7%, and 26.1% respectively, with a sensitivity of 90.5%, 64%, and 96.0% and specificity of 72%, 95.2%, and 85.7% respectively. CONCLUSIONS: The fCMR protocol can be used to make prognostic assessments in patients with CHD and BH limitations by calculating IS and LVEF.


Assuntos
Suspensão da Respiração , Doença das Coronárias/diagnóstico por imagem , Pulmão/fisiopatologia , Imagem Cinética por Ressonância Magnética , Idoso , Meios de Contraste , Doença das Coronárias/fisiopatologia , Feminino , Gadolínio DTPA , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/fisiopatologia , Valor Preditivo dos Testes , Prognóstico , Estudos Prospectivos , Volume Sistólico , Função Ventricular Esquerda
11.
J Cardiovasc Magn Reson ; 23(1): 108, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34629101

RESUMO

The Society for Cardiovascular Magnetic Resonance (SCMR) is an international society focused on the research, education, and clinical application of cardiovascular magnetic resonance (CMR). Case of the week is a case series hosted on the SCMR website ( https://www.scmr.org ) that demonstrates the utility and importance of CMR in the clinical diagnosis and management of cardiovascular disease. Each case consists of the clinical presentation and a discussion of the condition and the role of CMR in diagnosis and guiding clinical management. The cases are all instructive and helpful in the approach to patient management. We present a digital archive of the 2020 Case of the Week series of 11 cases as a means of further enhancing the education of those interested in CMR and as a means of more readily identifying these cases using a PubMed or similar search engine.


Assuntos
Doenças Cardiovasculares , Imageamento por Ressonância Magnética , Doenças Cardiovasculares/diagnóstico por imagem , Doenças Cardiovasculares/terapia , Humanos , Espectroscopia de Ressonância Magnética , Valor Preditivo dos Testes
12.
NMR Biomed ; 34(11): e4589, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34291517

RESUMO

Abnormal coronary endothelial function (CEF), manifesting as depressed vasoreactive responses to endothelial-specific stressors, occurs early in atherosclerosis, independently predicts cardiovascular events, and responds to cardioprotective interventions. CEF is spatially heterogeneous along a coronary artery in patients with atherosclerosis, and thus recently developed and tested non-invasive 2D MRI techniques to measure CEF may not capture the extent of changes in CEF in a given coronary artery. The purpose of this study was to develop and test the first volumetric coronary 3D MRI cine method for assessing CEF along the proximal and mid-coronary arteries with isotropic spatial resolution and in free-breathing. This approach, called 3D-Stars, combines a 6 min continuous, untriggered golden-angle stack-of-stars acquisition with a novel image-based respiratory self-gating method and cardiac and respiratory motion-resolved reconstruction. The proposed respiratory self-gating method agreed well with respiratory bellows and center-of-k-space methods. In healthy subjects, 3D-Stars vessel sharpness was non-significantly different from that by conventional 2D radial in proximal segments, albeit lower in mid-portions. Importantly, 3D-Stars detected normal vasodilatation of the right coronary artery in response to endothelial-dependent isometric handgrip stress in healthy subjects. Coronary artery cross-sectional areas measured using 3D-Stars were similar to those from 2D radial MRI when similar thresholding was used. In conclusion, 3D-Stars offers good image quality and shows feasibility for non-invasively studying vasoreactivity-related lumen area changes along the proximal coronary artery in 3D during free-breathing.


Assuntos
Vasos Coronários/diagnóstico por imagem , Vasos Coronários/fisiologia , Endotélio Vascular/diagnóstico por imagem , Endotélio Vascular/fisiologia , Imageamento Tridimensional , Imagem Cinética por Ressonância Magnética , Respiração , Adulto , Diástole/fisiologia , Estudos de Viabilidade , Feminino , Humanos , Masculino
13.
Korean J Radiol ; 22(7): 1044-1053, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33856138

RESUMO

OBJECTIVE: Motion-corrected averaging with a single-shot technique was introduced for faster acquisition of late-gadolinium-enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging while free-breathing. We aimed to evaluate the image quality (IQ) of free-breathing motion-corrected single-shot LGE (moco-ss-LGE) in patients with hypertrophic cardiomyopathy (HCM). MATERIALS AND METHODS: Between April and December 2019, 30 patients (23 men; median age, 48.5; interquartile range [IQR], 36.5-61.3) with HCM were prospectively enrolled. Breath-held single-shot LGE (bh-ss-LGE) and free-breathing moco-ss-LGE images were acquired in random order on a 3T MR system. Semi-quantitative IQ scores, contrast-to-noise ratios (CNRs), and quantitative size of myocardial scar were assessed on pairs of bh-ss-LGE and moco-ss-LGE. The mean ± standard deviation of the parameters was obtained. The results were compared using the Wilcoxon signed-rank test. RESULTS: The moco-ss-LGE images had better IQ scores than the bh-ss-LGE images (4.55 ± 0.55 vs. 3.68 ± 0.45, p < 0.001). The CNR of the scar to the remote myocardium (34.46 ± 11.85 vs. 26.13 ± 10.04, p < 0.001), scar to left ventricle (LV) cavity (13.09 ± 7.95 vs. 9.84 ± 6.65, p = 0.030), and LV cavity to remote myocardium (33.12 ± 15.53 vs. 22.69 ± 11.27, p < 0.001) were consistently greater for moco-ss-LGE images than for bh-ss-LGE images. Measurements of scar size did not differ significantly between LGE pairs using the following three different quantification methods: 1) full width at half-maximum method; 23.84 ± 12.88% vs. 24.05 ± 12.81% (p = 0.820), 2) 6-standard deviation method, 15.14 ± 10.78% vs. 15.99 ± 10.99% (p = 0.186), and 3) 3-standard deviation method; 36.51 ± 17.60% vs. 37.50 ± 17.90% (p = 0.785). CONCLUSION: Motion-corrected averaging may allow for superior IQ and CNRs with free-breathing in single-shot LGE imaging, with a herald of free-breathing moco-ss-LGE as the scar imaging technique of choice for clinical practice.


Assuntos
Cardiomiopatia Hipertrófica , Gadolínio , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Meios de Contraste , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Miocárdio , Estudos Prospectivos
14.
Magn Reson Med ; 86(2): 637-647, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33768617

RESUMO

PURPOSE: (1) To investigate the effect of internal localized movement on 3DMR intracranial vessel wall imaging and (2) to develop a novel motion-compensation approach combining volumetric navigator (vNav) and self-gating (SG) to simultaneously compensate for bulk and localized movements. METHODS: A 3D variable-flip-angle turbo spin-echo (ie, SPACE) sequence was modified to incorporate vNav and SG modules. The SG signals from the center k-space line are acquired at the beginning of each TR to detect localized motion-affected TRs. The vNavs from low-resolution 3D EPI are acquired to identify bulk head motion. Fifteen healthy subjects and 3 stroke patients were recruited in this study. Overall image quality (0-poor to 4-excellent) and vessel wall sharpness were compared among the scenarios with and without bulk and/or localized motion and/or the proposed compensation strategies. RESULTS: Localized motion reduced wall sharpness, which was significantly mitigated by SG (ie, outer boundary of basilar artery: 0.68 ± 0.27 vs 0.86 ± 0.17; P = .037). When motion occurred, the overall image quality and vessel wall sharpness obtained with vNav-SG SPACE were significantly higher than those obtained with conventional SPACE (ie, basilarartery outer boundary sharpness: 0.73 ± 0.24 vs 0.94 ± 0.24; P = .033), yet comparable to those obtained in motion-free scans (ie, basilarartery outer boundary sharpness: 0.94 ± 0.24 vs 0.96 ± 0.31; P = .815). CONCLUSION: Localized movements can induce considerable artifacts in intracranial vessel wall imaging. The vNav-SG approach is capable of compensating for both bulk and localized motions.


Assuntos
Aumento da Imagem , Angiografia por Ressonância Magnética , Artefatos , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento Tridimensional , Movimento (Física)
15.
J Cardiovasc Magn Reson ; 23(1): 12, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33627144

RESUMO

BACKGROUND: Coronary hyper-intense plaque (CHIP) detected on T1-weighted cardiovascular magnetic resonance (CMR) has been shown to associate with vulnerable plaque features and worse outcomes in low- and intermediate-risk populations. However, the prevalence of CHIP and its clinical significance in the higher-risk acute coronary syndrome (ACS) population have not been systematically studied. This study aims to assess the relationship between CHIP and ACS clinical severity using intracoronary optical coherence tomography (OCT) as the reference. METHODS: A total of 62 patients with known or suspected coronary artery disease were prospectively enrolled including a clinically diagnosed ACS group (n = 50) and a control group with stable angina pectoris (n = 12). The ACS group consisted of consecutive patients including unstable angina pectoris (n = 27), non-ST-segment-elevation myocardial infarction (non-STEMI) (n = 8), and ST-segment-elevation myocardial infarction (STEMI) (n = 15), respectively. All patients underwent non-contrast coronary CMR to determine the plaque-to-myocardium signal intensity ratio (PMR). RESULTS: Among the four groups of patients, a progressive increase in the prevalence of CHIPs (stable angina, 8%; unstable angina, 26%; non-STEMI, 38%; STEMI, 67%; p = 0.009), and PMR values (stable angina, 1.1; unstable angina, 1.2; non-STEMI, 1.3; STEMI, 1.6; median values, P = 0.004) were observed. Thrombus (7/8, 88% vs. 4/22, 18%, p = 0.001) and plaque rupture (5/8, 63% vs. 2/22, 9%, p = 0.007) were significantly more prevalent in CHIPs than in plaques without hyper-intensity. Elevated PMR was associated with high-risk plaque features including plaque rupture, thrombus, and intimal vasculature. A positive correlation was observed between PMR and the number of high-risk plaque features identified by OCT (r = 0.44, p = 0.015). CONCLUSIONS: The prevalence of CHIPs and PMR are positively associated with the disease severity and high-risk plaque morphology in ACS.


Assuntos
Síndrome Coronariana Aguda/diagnóstico por imagem , Doença da Artéria Coronariana/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Imageamento por Ressonância Magnética , Placa Aterosclerótica , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Medição de Risco , Fatores de Risco , Ruptura Espontânea , Índice de Gravidade de Doença , Tomografia de Coerência Óptica
16.
Magn Reson Med ; 86(1): 442-455, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33543788

RESUMO

PURPOSE: Increased arterial stiffness has been shown to be one of the earliest markers of cerebrovascular dysfunction. As a surrogate marker of arterial stiffness, pulse wave velocity (PWV) quantifications are generally carried out on central and peripheral arteries. The purpose of this study was to develop and evaluate an MRI approach to assess carotid stiffness by measuring carotid PWV (cPWV) using a fast oblique-sagittal phase-contrast MRI sequence. METHODS: In 29 volunteers, a single-slice oblique-sagittal phase-contrast MRI sequence with retrospective cardiac gating was used to quantify blood velocity waveforms along a vessel segment covering the common carotid artery (CCA) and the internal carotid artery (ICA). The CCA-ICA segment length was measured from a region of interest selected on the magnitude image. Phase-contrast MRI-measured velocities were also used to quantify the ICA pulsatility index along with cPWV quantification. RESULTS: The mean value of cPWV calculated using the middle upslope area algorithm was 2.86 ± 0.71 and 3.97 ± 1.14 m/s in young and elderly subjects, respectively. Oblique-sagittal phase-contrast MRI-derived cPWV measurements showed excellent intrascan and interscan repeatability. cPWV and ICA pulsatility index were significantly greater in older subjects compared to those in the young subjects (P < .01 and P = .01, respectively). Also, increased cPWV values were associated with elevated systolic blood pressure (ß = 0.05, P = .03). CONCLUSION: This study demonstrated that oblique-sagittal phase-contrast MRI is a feasible technique for the quantification of both cPWV and ICA pulsatility index and showed their potential utility in evaluating cerebroarterial aging and age-related neurovascular disorders.


Assuntos
Análise de Onda de Pulso , Rigidez Vascular , Idoso , Velocidade do Fluxo Sanguíneo , Artérias Carótidas/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Estudos Retrospectivos
17.
Eur J Radiol ; 135: 109510, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33401112

RESUMO

OBJECTIVE: To compare the image quality and late gadolinium enhancement (LGE) quantification between free-breathing motion-corrected and conventional breath-hold LGE method in a variety of cardiovascular diseases. MATERIALS AND METHODS: 149 consecutive patients underwent contrast-enhanced cardiac magnetic resonance examination employing both free-breathing motion-corrected LGE and conventional breath-hold LGE method. Scan time, contrast-to-noise ratio, overall image quality score and LGE mass were measured and analyzed statistically. RESULTS: Free-breathing motion-corrected LGE method had a shorter scan time and higher overall image quality score in comparison with conventional breath-hold LGE method (p < 0.001). Univariate/multivariate logistic regression analysis showed that breath-holding difficulty, high heart rate and arrhythmia could be predictive factors possibly for an inferior image quality score (p < 0.05 for all). The contrast-to-noise ratios of free-breathing motion-corrected LGE images were higher than those of conventional breath-hold LGE images (p < 0.001). In the cases with subepicardial and/or transmural myocardial enhancement, the measured LGE masses were larger on free-breathing motion-corrected LGE images in comparison with those on conventional breath-hold LGE images (p < 0.05). CONCLUSION: Free-breathing motion-corrected LGE could be a better choice for patients who need contrast-enhanced cardiac MRI and have one or more of the risk factors for an inferior image quality score, including breath-holding difficulty, high heart rate and arrhythmia. However, an overestimation of LGE mass on free-breathing motion-corrected LGE image should be taken into consideration when LGE pattern involves subepicardial and/or transmural myocardium.


Assuntos
Meios de Contraste , Gadolínio , Suspensão da Respiração , Humanos , Aumento da Imagem , Imageamento por Ressonância Magnética , Miocárdio
18.
Quant Imaging Med Surg ; 11(1): 276-289, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33392028

RESUMO

BACKGROUND: Black-blood thrombus imaging (BTI) has shown to be advantageous for the diagnosis of deep vein thrombosis (DVT). However, previous techniques using fast spin echo have a high specific absorption rate. As DANTE (delay alternating with nutation for tailored excitation) black-blood preparation can suppress blood flows over a broad range of velocities, we hypothesized that a DANTE black-blood preparation combined with a fast low-angle shot (FLASH) gradient-echo readout-DANTE-FLASH could be used to diagnose DVT. METHODS: Eleven healthy volunteers and 30 suspected DVT patients were recruited to undergo DANTE-FLASH and magnetic resonance direct thrombus imaging (MRDTI). The suspected DVT patients were also examined by ultrasound (US). For the segment level, a total of 1,066 venous vessel segments were analyzed. Using US and MRDTI as the references, the sensitivity (SE), specificity (SP), positive and negative predictive values (PPV and NPV), and accuracy (ACC) of DANTE-FLASH were calculated. To quantitatively compare image quality between DANTE-FLASH and MRDTI, image signal-to-noise ratio (SNR), apparent contrast-to-noise ratio (CNR) between muscle and the venous lumen, and the apparent CNR between the thrombus and venous lumen were measured. Additionally, diagnostic confidence, image quality, and clot burden were also evaluated. RESULTS: Using the consensus results of US and MRDTI as a standard reference, the diagnostic SE, SP, PPV, NPV, and ACC of DANTE-FLASH for the 2 readers were 97.0% and 93.2%, 99.0% and 98.2%, 93.4% and 87.9%, 99.6% and 99.0%, and 98.8% and 97.6%, respectively. According to the image quantitative analysis results, DANTE-FLASH demonstrated higher image SNR and CNR than MRDTI. The image quality and diagnostic confidence scores of DANTE-FLASH were higher than MRDTI (3.66±0.44 vs. 3.52±0.52, P<0.001, and 3.84±0.36 vs. 3.76±0.41, P<0.001). There was excellent agreement between DANTE-FLASH and MRDTI on clot burden evaluation. CONCLUSIONS: DANTE-FLASH provided better image quality than MRDTI and accurately detected thrombi. It may, therefore, serve as a safe and convenient alternative for the diagnosis of DVT.

19.
Magn Reson Med ; 85(5): 2634-2648, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33252140

RESUMO

PURPOSE: We aimed to develop a novel free-breathing cardiac diffusion tensor MRI (DT-MRI) approach, M2-MT-MOCO, capable of whole left ventricular coverage that leverages second-order motion compensation (M2) diffusion encoding and multitasking (MT) framework to efficiently correct for respiratory motion (MOCO). METHODS: Imaging was performed in 16 healthy volunteers and 3 heart failure patients with symptomatic dyspnea. The healthy volunteers were scanned to compare the accuracy of interleaved multislice coverage of the entire left ventricle with a single-slice acquisition and the accuracy of the free-breathing conventional MOCO and MT-MOCO approaches with reference breath-hold DT-MRI. Mean diffusivity (MD), fractional anisotropy (FA), helix angle transmurality (HAT), and intrascan repeatability were quantified and compared. RESULTS: In all subjects, free-breathing M2-MT-MOCO DT-MRI yielded DWI of the entire left ventricle without bulk motion-induced signal loss. No significant differences were seen in the global values of MD, FA, and HAT in the multislice and single-slice acquisitions. Furthermore, global quantification of MD, FA, and HAT were also not significantly different between the MT-MOCO and breath-hold, whereas conventional MOCO yielded significant differences in MD, FA, and HAT with MT-MOCO and FA with breath-hold. In heart failure patients, M2-MT-MOCO DT-MRI was feasible yielding higher MD, lower FA, and lower HAT compared with healthy volunteers. Substantial agreement was found between repeated scans across all subjects for MT-MOCO. CONCLUSION: M2-MT-MOCO enables free-breathing DT-MRI of the entire left ventricle in 10 min, while preserving quantification of myocardial microstructure compared to breath-held and single-slice acquisitions and is feasible in heart failure patients.


Assuntos
Imagem de Tensor de Difusão , Ventrículos do Coração , Ventrículos do Coração/diagnóstico por imagem , Humanos , Movimento (Física) , Miocárdio , Reprodutibilidade dos Testes , Respiração
20.
J Int Med Res ; 48(10): 300060520964664, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33111603

RESUMO

OBJECTIVE: This prospective study investigated the feasibility of an optimized cardiovascular magnetic resonance (CMR) examination protocol using the motion-corrected (MOCO), balanced steady-state free precession (bSSFP), phase-sensitive inversion recovery (PSIR) sequence combined with a gadolinium contrast agent with a high relaxation rate in patients who cannot hold their breath. METHODS: Fifty-one patients with heart disease underwent CMR examinations twice and these were performed with different late gadolinium enhancement (LGE) imaging sequences (fast low-angle shot [FLASH] sequence vs. MOCO sequence) and different gadolinium contrast agents (gadopentetate dimeglumine vs. gadobenate dimeglumine) with a 48-hour interval. LGE image quality, total time spent in the whole study, and time taken to perform LGE imaging were compared for the two CMR examinations. RESULTS: LGE images with the MOCO bSSFP PSIR sequence showed significantly higher image quality compared with those with the segmented FLASH PSIR sequence. There was a significant difference between the total scan time for the two examinations and different LGE sequences. CONCLUSIONS: The MOCO bSSFP PSIR sequence effectively improves the quality of LGE images. Changing the CMR scanning protocol by combining the MOCO bSSFP PSIR sequence with a gadolinium contrast agent with a high relaxation rate effectively shortens the scan time.Clinical trial registration number: ChiCTR-ROC-17013978.


Assuntos
Meios de Contraste , Cardiopatias , Gadolínio , Gadolínio DTPA , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Miocárdio , Estudos Prospectivos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...