Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 363, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842572

RESUMO

In addition to genetic mutations, biomechanical factors also affect the structures and functions of the tumors during tumor growth, including solid stress, interstitial fluid pressure, stiffness, and microarchitecture. Solid stress affects tumors by compressing cancer and stromal cells and deforming blood and lymphatic vessels which reduce supply of oxygen, nutrients and drug delivery, making resistant to treatment. Researchers simulate the stress by creating mechanical models both in vitro and in vivo. Cell models in vitro are divided into two dimensions (2D) and three dimensions (3D). 2D models are simple to operate but exert pressure on apical surface of the cells. 3D models, the multicellular tumor spheres, are more consistent with the actual pathological state in human body. However, the models are more difficult to establish compared with the 2D models. Besides, the procedure of the animal models in vivo is even more complex and tougher to operate. Then, researchers challenged to quantify the solid stress through some measurement methods. We compared the advantages and limitations of these models and methods, which may help to explore new therapeutic targets for normalizing the tumor's physical microenvironment. KEY POINTS: •This is the first review to conclude the mechanical models and measurement methods in tumors. •The merit and demerit of these models and methods are compared. •Insights into further models are discussed.


Assuntos
Neoplasias , Humanos , Neoplasias/patologia , Animais , Fenômenos Biomecânicos , Microambiente Tumoral , Modelos Biológicos , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...