Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 47(6): 3045-3057, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30715470

RESUMO

Uridylation-dependent RNA decay is a widespread eukaryotic pathway modulating RNA homeostasis. Terminal uridylyltransferases (Tutases) add untemplated uridyl residues to RNA 3'-ends, marking them for degradation by the U-specific exonuclease Dis3L2. In Schizosaccharomyces pombe, Cid1 uridylates a variety of RNAs. In this study, we investigate the prevalence and impact of uridylation-dependent RNA decay in S. pombe by transcriptionally profiling cid1 and dis3L2 deletion strains. We found that the exonuclease Dis3L2 represents a bottleneck in uridylation-dependent mRNA decay, whereas Cid1 plays a redundant role that can be complemented by other Tutases. Deletion of dis3L2 elicits a cellular stress response, upregulating transcription of genes involved in protein folding and degradation. Misfolded proteins accumulate in both deletion strains, yet only trigger a strong stress response in dis3L2 deficient cells. While a deletion of cid1 increases sensitivity to protein misfolding stress, a dis3L2 deletion showed no increased sensitivity or was even protective. We furthermore show that uridylyl- and adenylyltransferases cooperate to generate a 5'-NxAUUAAAA-3' RNA motif on dak2 mRNA. Our studies elucidate the role of uridylation-dependent RNA decay as part of a global mRNA surveillance, and we found that perturbation of this pathway leads to the accumulation of misfolded proteins and elicits cellular stress responses.


Assuntos
RNA Nucleotidiltransferases/genética , Estabilidade de RNA/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Exorribonucleases/genética , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Nucleotidiltransferases/genética , RNA Fúngico/genética , RNA Mensageiro/genética , Uridina/genética
2.
Genes (Basel) ; 9(6)2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921790

RESUMO

microRNA (miRNA) activity and regulation are of increasing interest as new therapeutic targets. Traditional approaches to assess miRNA levels in cells rely on RNA sequencing or quantitative PCR. While useful, these approaches are based on RNA extraction and cannot be applied in real-time to observe miRNA activity with single-cell resolution. We developed a green fluorescence protein (GFP)-based reporter system that allows for a direct, real-time readout of changes in miRNA activity in live cells. The miRNA activity reporter (MiRAR) consists of GFP fused to a 3′ untranslated region containing specific miRNA binding sites, resulting in miRNA activity-dependent GFP expression. Using qPCR, we verified the inverse relationship of GFP fluorescence and miRNA levels. We demonstrated that this novel optogenetic reporter system quantifies cellular levels of the tumor suppressor miRNA let-7 in real-time in single Human embryonic kidney 293 (HEK 293) cells. Our data shows that the MiRAR can be applied to detect changes in miRNA levels upon disruption of miRNA degradation pathways. We further show that the reporter could be adapted to monitor another disease-relevant miRNA, miR-122. With trivial modifications, this approach could be applied across the miRNome for quantification of many specific miRNA in cell cultures, tissues, or transgenic animal models.

3.
RNA Biol ; 15(4-5): 614-622, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28901837

RESUMO

tRNAHis guanylyltransferase (Thg1) has unique reverse (3'-5') polymerase activity occurring in all three domains of life. Most eukaryotic Thg1 homologs are essential genes involved in tRNAHis maturation. These enzymes normally catalyze a single 5' guanylation of tRNAHis lacking the essential G-1 identity element required for aminoacylation. Recent studies suggest that archaeal type Thg1, which includes most archaeal and bacterial Thg1 enzymes is phylogenetically distant from eukaryotic Thg1. Thg1 is evolutionarily related to canonical 5'-3' forward polymerases but catalyzes reverse 3'-5'polymerization. Similar to its forward polymerase counterparts, Thg1 encodes the conserved catalytic palm domain and fingers domain. Here we investigate the minimal requirements for reverse polymerization. We show that the naturally occurring minimal Thg1 enzyme from Ignicoccus hospitalis (IhThg1), which lacks parts of the conserved fingers domain, is catalytically active. And adds all four natural nucleotides to RNA substrates, we further show that the entire fingers domain of Methanosarcina acetivorans Thg1 and Pyrobaculum aerophilum Thg1 (PaThg1) is dispensable for enzymatic activity. In addition, we identified residues in yeast Thg1 that play a part in preventing extended polymerization. Mutation of these residues with alanine resulted in extended reverse polymerization. PaThg1 was found to catalyze extended, template dependent tRNA repair, adding up to 13 nucleotides to a truncated tRNAHis substrate. Sequencing results suggest that PaThg1 fully restored the near correct sequence of the D- and acceptor stem, but also produced incompletely and incorrectly repaired tRNA products. This research forms the basis for future engineering efforts towards a high fidelity, template dependent reverse polymerase.


Assuntos
Desulfurococcaceae/enzimologia , Methanosarcina/enzimologia , Nucleotidiltransferases/metabolismo , Pyrobaculum/enzimologia , RNA de Transferência de Histidina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Sequência Conservada , Desulfurococcaceae/genética , Expressão Gênica , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Methanosarcina/genética , Modelos Moleculares , Mutação , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Polimerização , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Engenharia de Proteínas/métodos , Pyrobaculum/genética , RNA de Transferência de Histidina/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
4.
Antioxid Redox Signal ; 29(4): 377-388, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29117711

RESUMO

AIMS: Thioredoxin reductase 1 (TrxR1) is a cancer target and essential selenoprotein that defends the cell against reactive oxygen species and regulates cellular signaling and redox pathways. Previous cell-based studies correlated TrxR1 acetylation with modulated cellular reduction activity, yet the function of specific acetylation sites on TrxR1 remains unknown. INNOVATION: We produced site-specifically acetylated TrxR1 variants that also contain selenocysteine (Sec). We demonstrated efficient high-fidelity protein synthesis with 22 different amino acids by simultaneous UAG codon reassignment to Nɛ-acetyl-lysine and UGA codon recoding to Sec. RESULTS: We characterized TrxR1 variants acetylated at physiologically relevant sites and found that single acetylation sites increased TrxR1 activity, enhancing the apparent catalytic rate up to 2.7-fold. The activity increase in acetylated TrxR1 (acTrxR1) is reversible and is reduced following deacetylation with histone deacetylase. CONCLUSION: Here we present a novel mechanism through which acetylation increases TrxR1 activity by destabilizing low-activity TrxR1 multimers, increasing the population of active dimeric TrxR1. Antioxid. Redox Signal. 29, 377-388.


Assuntos
Tiorredoxina Redutase 1/química , Tiorredoxina Redutase 1/metabolismo , Acetilação , Humanos , Modelos Moleculares , Tiorredoxina Redutase 1/genética
5.
Biochim Biophys Acta Gen Subj ; 1861(11 Pt B): 3038-3046, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28689991

RESUMO

Malfunction of the ubiquitin (Ub) E3 ligase, parkin, leads to defects in mitophagy and protein quality control linked to Parkinson's disease. Parkin activity is stimulated by phosphorylation of Ub at Ser65 (pUbS65). Since the upstream kinase is only known for Ser65 (PINK1), the biochemical function of other phosphorylation sites on Ub remain largely unknown. We used fluorescently labelled and site-specifically phosphorylated Ub substrates to quantitatively relate the position and stoichiometry of Ub phosphorylation to parkin activation. Fluorescence measurements show that pUbS65-stimulated parkin is 5-fold more active than auto-inhibited and un-stimulated parkin, which catalyzes a basal level of auto-ubiquitination. We consistently observed a low but detectable level of parkin activity with pUbS12. Strikingly, pUbS57 hyper-activates parkin, and our data demonstrate that parkin is able to selectively synthesize poly-pUbS57 chains, even when 90% of the Ub in the reaction is un-phosphorylated. We further found that parkin ubiquitinates its physiological substrate Miro-1 with chains solely composed of pUbS65 and more efficiently with pUbS57 chains. Parkin hyper-activation by pUbS57 demonstrates the first PINK1-independent route to active parkin, revealing the roles of multiple ubiquitin phosphorylation sites in governing parkin stimulation and catalytic activity. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.


Assuntos
Serina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Sítios de Ligação , Catálise , Humanos , Modelos Moleculares , Fosforilação , Serina/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética
6.
FEBS Lett ; 590(10): 1530-42, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27096575

RESUMO

The activity of the Parkinson's disease-linked E3 ligase parkin is stimulated by phosphorylation at ubiquitin Ser65 (pUb(S65) ). The role of other ubiquitin phospho-sites and their kinases are unknown. We produced pUb variants (pS7, pS12, pS20, pS57, pS65) by genetically encoding phosphoserine with the UAG codon. In release factor-deficient Escherichia coli (ΔRF1), intended to enhance UAG read-through, we discovered ubiquitin variants lacking the UAG-encoded residue, demonstrating previously undocumented +3 frame shifting. We successfully purified each pUb variant from mistranslated products. While pUb(S20) failed to stimulate parkin, parkin was partially active with pUb(S12) . We observed significant ubiquitination when pUb(S65) was the sole substrate.


Assuntos
Códon de Terminação , Fosfosserina/metabolismo , Ubiquitina/metabolismo , Escherichia coli/genética , Mutação da Fase de Leitura , Humanos , Biossíntese de Proteínas , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
7.
Proc Natl Acad Sci U S A ; 113(9): 2412-7, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26884184

RESUMO

FoF1 is a membrane-bound molecular motor that uses proton-motive force (PMF) to drive the synthesis of ATP from ADP and Pi. Reverse operation generates PMF via ATP hydrolysis. Catalysis in either direction involves rotation of the γε shaft that connects the α3ß3 head and the membrane-anchored cn ring. X-ray crystallography and other techniques have provided insights into the structure and function of FoF1 subcomplexes. However, interrogating the conformational dynamics of intact membrane-bound FoF1 during rotational catalysis has proven to be difficult. Here, we use hydrogen/deuterium exchange mass spectrometry to probe the inner workings of FoF1 in its natural membrane-bound state. A pronounced destabilization of the γ C-terminal helix during hydrolysis-driven rotation was observed. This behavior is attributed to torsional stress in γ, arising from γ⋅⋅⋅α3ß3 interactions that cause resistance during γ rotation within the apical bearing. Intriguingly, we find that destabilization of γ occurs only when FoF1 operates against a PMF-induced torque; the effect disappears when PMF is eliminated by an uncoupler. This behavior resembles the properties of automotive engines, where bearings inflict greater forces on the crankshaft when operated under load than during idling.


Assuntos
Espectrometria de Massas/métodos , ATPases Translocadoras de Prótons/metabolismo , Cristalografia por Raios X , ATPases Translocadoras de Prótons/química
8.
Proc Natl Acad Sci U S A ; 108(10): 3924-9, 2011 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-21368147

RESUMO

ATP is synthesized by ATP synthase (F(O)F(1)-ATPase). Its rotary electromotor (F(O)) translocates protons (in some organisms sodium cations) and generates torque to drive the rotary chemical generator (F(1)). Elastic power transmission between F(O) and F(1) is essential for smoothing the cooperation of these stepping motors, thereby increasing their kinetic efficiency. A particularly compliant elastic domain is located on the central rotor (c(10-15)/ε/γ), right between the two sites of torque generation and consumption. The hinge on the active lever on subunit ß adds further compliance. It is under contention whether or not the peripheral stalk (and the "stator" as a whole) also serves as elastic buffer. In the enzyme from Escherichia coli, the most extended component of the stalk is the homodimer b(2), a right-handed α-helical coiled coil. By fluctuation analysis we determined the spring constant of the stator in response to twisting and bending, and compared wild-type with b-mutant enzymes. In both deformation modes, the stator was very stiff in the wild type. It was more compliant if b was elongated by 11 amino acid residues. Substitution of three consecutive residues in b by glycine, expected to destabilize its α-helical structure, further reduced the stiffness against bending deformation. In any case, the stator was at least 10-fold stiffer than the rotor, and the enzyme retained its proton-coupled activity.


Assuntos
Proteínas Motores Moleculares/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Sequência de Aminoácidos , Elasticidade , Escherichia coli/enzimologia , Magnetismo , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/genética , Dados de Sequência Molecular , Mutação , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética , Homologia de Sequência de Aminoácidos
9.
J Biol Chem ; 283(48): 33602-10, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-18786919

RESUMO

The position of the a subunit of the membrane-integral F0 sector of Escherichia coli ATP synthase was investigated by single molecule fluorescence resonance energy transfer studies utilizing a fusion of enhanced green fluorescent protein to the C terminus of the a subunit and fluorescent labels attached to specific positions of the epsilon or gamma subunits. Three fluorescence resonance energy transfer levels were observed during rotation driven by ATP hydrolysis corresponding to the three resting positions of the rotor subunits, gamma or epsilon, relative to the a subunit of the stator. Comparison of these positions of the rotor sites with those previously determined relative to the b subunit dimer indicates the position of a as adjacent to the b dimer on its counterclockwise side when the enzyme is viewed from the cytoplasm. This relationship provides stability to the membrane interface between a and b2, allowing it to withstand the torque imparted by the rotor during ATP synthesis as well as ATP hydrolysis.


Assuntos
ATPases Bacterianas Próton-Translocadoras/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Modelos Moleculares , Complexos Multienzimáticos/química , Subunidades Proteicas/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , ATPases Bacterianas Próton-Translocadoras/metabolismo , Proteínas de Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Hidrólise , Complexos Multienzimáticos/metabolismo , Estrutura Quaternária de Proteína/fisiologia , Subunidades Proteicas/metabolismo
10.
Biochim Biophys Acta ; 1777(7-8): 583-91, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18395001

RESUMO

A dimer of 156-residue b subunits forms the peripheral stator stalk of eubacterial ATP synthase. Dimerization is mediated by a sequence with an unusual 11-residue (hendecad) repeat pattern, implying a right-handed coiled coil structure. We investigated the potential for producing functional chimeras in the b subunit of Escherichia coli ATP synthase by replacing parts of its sequence with corresponding regions of the b subunits from other eubacteria, sequences from other polypeptides having similar hendecad patterns, and sequences forming left-handed coiled coils. Replacement of positions 55-110 with corresponding sequences from Bacillus subtilis and Thermotoga maritima b subunits resulted in fully functional chimeras, judged by support of growth on nonfermentable carbon sources. Extension of the T. maritima sequence N-terminally to position 37 or C-terminally to position 124 resulted in slower but significant growth, indicating retention of some capacity for oxidative phosphorylation. Portions of the dimerization domain between 55 and 95 could be functionally replaced by segments from two other proteins having a hendecad pattern, the distantly related E subunit of the Chlamydia pneumoniae V-type ATPase and the unrelated Ag84 protein of Mycobacterium tuberculosis. Extension of such sequences to position 110 resulted in loss of function. None of the chimeras that incorporated the leucine zipper of yeast GCN4, or other left-handed coiled coils, supported oxidative phosphorylation, but substantial ATP-dependent proton pumping was observed in membrane vesicles prepared from cells expressing such chimeras. Characterization of chimeric soluble b polypeptides in vitro showed their retention of a predominantly helical structure. The T. maritima b subunit chimera melted cooperatively with a midpoint more than 20 degrees C higher than the normal E. coli sequence. The GCN4 construct melted at a similarly high temperature, but with much reduced cooperativity, suggesting a degree of structural disruption. These studies provide insight into the structural and sequential requirements for stator stalk function.


Assuntos
Complexos de ATP Sintetase/química , Complexos de ATP Sintetase/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Complexos de ATP Sintetase/isolamento & purificação , Sequência de Aminoácidos , Domínio Catalítico , Membrana Celular/enzimologia , Elementos de DNA Transponíveis , Dimerização , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/isolamento & purificação , Modelos Moleculares , Dados de Sequência Molecular , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
11.
J Mol Biol ; 364(4): 735-46, 2006 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-17028022

RESUMO

The dimerization domain of Escherichia coli ATP synthase b subunit forms an atypical parallel two-stranded coiled coil. Sequence analysis reveals an 11-residue abcdefghijk repeat characteristic of right-handed coiled coils, but no other naturally occurring parallel dimeric structure of this class has been identified. The arrangement of the helices was studied by their propensity to form interhelix disulfide linkages and analysis of the stability and shape of disulfide-linked dimers. Disulfides formed preferentially between cysteine residues in an a position of one helix and either of the adjacent h positions of the partner. Such heterodimers were far more stable to thermal denaturation than homodimers and, on the basis of gel-filtration chromatography studies, were similar in shape to both non-covalent dimers and dimers linked through flexible Gly(1-3)Cys C-terminal extensions. The results indicate a right-handed coiled-coil structure with intrinsic asymmetry, the two helices being offset rather than in register. A function for the right-handed coiled coil in rotational catalysis is proposed.


Assuntos
Complexos de ATP Sintetase/química , Proteínas de Escherichia coli/química , ATPases Mitocondriais Próton-Translocadoras/química , Sequência de Aminoácidos , Catálise , Dimerização , Dissulfetos , Desnaturação Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas , Sequências Repetitivas de Ácido Nucleico
12.
J Biol Chem ; 281(18): 12408-13, 2006 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-16531410

RESUMO

The b subunit dimer of Escherichia coli ATP synthase serves essential roles as an assembly factor for the enzyme and as a stator during rotational catalysis. To investigate the functional importance of its coiled coil dimerization domain, a series of internal deletions including each individual residue between Lys-100 and Ala-105 (b(deltaK100)-b(deltaA105)), b(deltaK100-A103), and b(deltaK100-Q106) as well as a control b(K100A) missense mutation were prepared. All of the mutants supported assembly of ATP synthase, but all single-residue deletions failed to support growth on acetate, indicating a severe defect in oxidative phosphorylation, and b(deltaK100-Q106) displayed moderately reduced growth. The membrane-bound ATPase activities of these strains showed a related reduction in sensitivity to dicyclohexylcarbodiimide, indicative of uncoupling. Analysis of dimerization of the soluble constructs of b(deltaK100) and the multiple-residue deletions by sedimentation equilibrium revealed reduced dimerization compared with wild type for all deletions, with b(deltaK100-Q106) most severely affected. In cross-linking studies it was found that F1-ATPase can mediate the dimerization of some soluble b constructs but did not mediate dimerization of b(deltaK100) and b(deltaK100-Q106); these two forms also were defective in F1 binding analyses. We conclude that defective dimerization of soluble b constructs severely affects F1 binding in vitro, yet allows assembly of ATP synthase in vivo. The highly uncoupled nature of enzymes with single-residue deletions in b indicates that the b subunit serves an active function in energy coupling rather than just holding on to the F1 sector. This function is proposed to depend on proper, specific interactions between the b subunits and F1.


Assuntos
ATPases Bacterianas Próton-Translocadoras/fisiologia , Escherichia coli/enzimologia , Mutação , Sequência de Aminoácidos , ATPases Bacterianas Próton-Translocadoras/química , ATPases Bacterianas Próton-Translocadoras/genética , Sequência de Bases , Reagentes de Ligações Cruzadas/farmacologia , Dimerização , Dados de Sequência Molecular , Mutagênese , Mutagênese Sítio-Dirigida , Fosforilação , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína
13.
Biochemistry ; 41(21): 6875-84, 2002 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-12022893

RESUMO

The b subunit of E. coli F(0)F(1)-ATPase links the peripheral F(1) subunits to the membrane-integral F(0) portion and functions as a "stator", preventing rotation of F(1). The b subunit is present as a dimer in ATP synthase, and residues 62-122 are required to mediate dimerization. To understand how the b subunit dimer is formed, we have studied the structure of the isolated dimerization domain, b(62-122). Analytical ultracentrifugation and solution small-angle X-ray scattering (SAXS) indicate that the b(62-122) dimer is extremely elongated, with a frictional ratio of 1.60, a maximal dimension of 95 A, and a radius of gyration of 27 A, values that are consistent with an alpha-helical coiled-coil structure. The crystal structure of b(62-122) has been solved and refined to 1.55 A. The protein crystallized as an isolated, monomeric alpha helix with a length of 90 A. Combining the crystal structure of monomeric b(62-122) with SAXS data from the dimer in solution, we have constructed a model for the b(62-122) dimer in which the two helices form a coiled coil with a right-handed superhelical twist. Analysis of b sequences from E. coli and other prokaryotes indicates conservation of an undecad repeat, which is characteristic of a right-handed coiled coil and consistent with our structural model. Mutation of residue Arg-83, which interrupts the undecad pattern, to alanine markedly stabilized the dimer, as expected for the proposed two-stranded, right-handed coiled-coil structure.


Assuntos
Arginina/química , Escherichia coli/enzimologia , ATPases Translocadoras de Prótons/química , Sequência de Aminoácidos , Arginina/genética , Cristalografia por Raios X , Dimerização , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas , ATPases Translocadoras de Prótons/genética
14.
J Biol Chem ; 277(19): 16782-90, 2002 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-11875079

RESUMO

The rotational mechanism of ATP synthase was investigated by fusing three proteins from Escherichia coli, the 12-kDa soluble cytochrome b(562), the 20-kDa flavodoxin, and the 28-kDa flavodoxin reductase, to the C terminus of the epsilon subunit of the enzyme. According to the concept of rotational catalysis, because epsilon is part of the rotor a large domain added at this site should sterically clash with the second stalk, blocking rotation and fully inhibiting the enzyme. E. coli cells expressing the cytochrome b(562) fusion in place of wild-type epsilon grew using acetate as the energy source, indicating their capacity for oxidative phosphorylation. Cells expressing the larger flavodoxin or flavodoxin reductase fusions failed to grow on acetate. Immunoblot analysis showed that the fusion proteins were stable in the cells and that they had no effect on enzyme assembly. These results provide initial evidence supporting rotational catalysis in vivo. In membrane vesicles, the cytochrome b(562) fusion caused an increase in the apparent ATPase activity but a minor decrease in proton pumping. Vesicles bearing ATP synthase containing the larger fusion proteins showed reduced but significant levels of ATPase activity that was sensitive to inhibition by dicyclohexylcarbodiimide (DCCD) but no proton pumping. Thus, all fusions to epsilon generated an uncoupled component of ATPase activity. These results imply that a function of the C terminus of epsilon in F(1)F(0) is to increase the efficiency of the enzyme by specifically preventing the uncoupled hydrolysis of ATP. Given the sensitivity to DCCD, this uncoupled ATP hydrolysis may arise from rotational steps of gammaepsilon in the inappropriate direction after ATP is bound at the catalytic site. It is proposed that the C-terminal domain of epsilon functions to ensure that rotation occurs only in the direction of ATP synthesis when ADP is bound and only in the direction of hydrolysis when ATP is bound.


Assuntos
Complexos de ATP Sintetase/química , Proteínas de Escherichia coli , Escherichia coli/enzimologia , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Western Blotting , Domínio Catalítico , Divisão Celular , Grupo dos Citocromos b/metabolismo , DNA/metabolismo , Dicicloexilcarbodi-Imida/farmacologia , Relação Dose-Resposta a Droga , Hidrólise , Immunoblotting , Modelos Biológicos , Mutagênese Sítio-Dirigida , Oxigênio/metabolismo , Fosforilação , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Prótons , Proteínas Recombinantes de Fusão/metabolismo , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...