Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pineal Res ; 63(3)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28500782

RESUMO

Bone marrow mesenchymal stem cells (BMSCs) are an expandable population of stem cells which can differentiate into osteoblasts, chondrocytes and adipocytes. Dysfunction of BMSCs in response to pathological stimuli contributes to bone diseases. Melatonin, a hormone secreted from pineal gland, has been proved to be an important mediator in bone formation and mineralization. The aim of this study was to investigate whether melatonin protected against iron overload-induced dysfunction of BMSCs and its underlying mechanisms. Here, we found that iron overload induced by ferric ammonium citrate (FAC) caused irregularly morphological changes and markedly reduced the viability in BMSCs. Consistently, osteogenic differentiation of BMSCs was significantly inhibited by iron overload, but melatonin treatment rescued osteogenic differentiation of BMSCs. Furthermore, exposure to FAC led to the senescence in BMSCs, which was attenuated by melatonin as well. Meanwhile, melatonin was able to counter the reduction in cell proliferation by iron overload in BMSCs. In addition, protective effects of melatonin on iron overload-induced dysfunction of BMSCs were abolished by its inhibitor luzindole. Also, melatonin protected BMSCs against iron overload-induced ROS accumulation and membrane potential depolarization. Further study uncovered that melatonin inhibited the upregulation of p53, ERK and p38 protein expressions in BMSCs with iron overload. Collectively, melatonin plays a protective role in iron overload-induced osteogenic differentiation dysfunction and senescence through blocking ROS accumulation and p53/ERK/p38 activation.


Assuntos
Células da Medula Óssea/fisiologia , Diferenciação Celular , Sobrecarga de Ferro/fisiopatologia , Melatonina/fisiologia , Células-Tronco Mesenquimais/fisiologia , Adipogenia , Animais , Proliferação de Células , Senescência Celular , Compostos Férricos , Complexo Ferro-Dextran , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Osteogênese , Compostos de Amônio Quaternário , Espécies Reativas de Oxigênio/metabolismo , Triptaminas
2.
PLoS One ; 8(9): e72985, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24039836

RESUMO

Estrogen deficiency is associated with increased incidence of cardiovascular diseases. But merely estrogen supplementary treatment can induce many severe complications such as breast cancer. The present study was designed to elucidate molecular mechanisms underlying increased susceptibility of arrhythmogenesis during myocardial infarction with estrogen deprivation, which provides us a new target to cure cardiac disease accompanied with estrogen deprivation. We successfully established a rat model of myocardial ischemia (MI) accompanied with estrogen deprivation by coronary artery ligation and ovariectomy (OVX). Vulnerability and mortality of ventricular arrhythmias increased in estrogen deficiency rats compared to non estrogen deficiency rats when suffered MI, which was associated with down-regulation of microRNA-151-5p (miR-151-5p). Luciferase Reporter Assay demonstrated that miR-151-5p can bind to the 3'-UTR of FXYD1 (coding gene of phospholemman, PLM) and inhibit its expression. We found that the expression of PLM was increased in (OVX+MI) group compared with MI group. More changes such as down-regulation of Kir2.1/IK1, calcium overload had emerged in (OVX+MI) group compared to MI group merely. Transfection of miR-151-5p into primary cultured myocytes decreased PLM levels and [Ca(2+)]i, however, increased Kir2.1 levels. These effects were abolished by the antisense oligonucleotides against miR-151-5p. Co-immunoprecipitation and immunofluorescent experiments confirmed the co-localization between Kir2.1 and PLM in rat ventricular tissue. We conclude that the increased ventricular arrhythmias vulnerability in response to acute myocardial ischemia in rat is critically dependent upon down-regulation of miR-151-5p. These findings support the proposal that miR-151-5p could be a potential therapeutic target for the prevention of ischemic arrhythmias in the subjects with estrogen deficiency.


Assuntos
Arritmias Cardíacas/etiologia , Regulação da Expressão Gênica , Predisposição Genética para Doença , MicroRNAs/genética , Infarto do Miocárdio/complicações , Infarto do Miocárdio/genética , Potenciais de Ação , Animais , Animais Recém-Nascidos , Arritmias Cardíacas/mortalidade , Arritmias Cardíacas/fisiopatologia , Cálcio/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Regulação para Baixo , Estrogênios/deficiência , Estrogênios/metabolismo , Feminino , Ventrículos do Coração/metabolismo , Humanos , Espaço Intracelular/metabolismo , Infarto do Miocárdio/metabolismo , Isquemia Miocárdica/complicações , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ligação Proteica , Transporte Proteico , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...