Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 806(Pt 3): 151272, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34717987

RESUMO

The goals of the undertaken studies included assessment of the mobility of Rh nanoparticles (Rh NPs) and ionic forms (Rh(III)) in soil, optimization of the digestion procedure of environmental samples containing Rh NPs, and comparison of Rh NPs and Rh(III) uptake and bioaccumulation by hydroponically cultivated plants. Mass spectrometry with inductively coupled plasma (ICP MS) was used to determine the total content of Rh in solutions obtained after the processes of digestion and extraction. Transmission Electron Microscopy (TEM) supported the investigation of Rh NPs decomposition and proved the presence of uptaken nano forms in plant tissues. Adsorptive stripping voltammetry (AdSV) allowed to distinguish ionic and metallic forms of Rh, based on the fact that Rh NPs are electrochemically inactive. A two-step digestion procedure with H2SO4 and HNO3 was proposed for efficient decomposition of Rh NPs. Based on single extractions with selected extractants, it was found that independently of its chemical form Rh is substantially immobilized in soil. The mobility of Rh(III) and Rh NPs was below 38% and 0.02%, and the accumulation factor in leaves equaled 0.2 and 4.4, respectively.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Ródio , Poluentes do Solo , Disponibilidade Biológica , Ródio/análise , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...