Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 5: 41, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30083356

RESUMO

The role of melatonin in the regulation of fruit ripening and the mechanism involved remain largely unknown. In "Moldova" grape berries, melatonin accumulated rapidly from onset of veraison, reached the maximum at 94 days after bloom (DAB) and then exhibited low levels at late stages of berry ripening. By contrast, abscisic acid (ABA) and hydrogen peroxide (H2O2) exhibited different accumulation patterns, and ethylene was primarily produced immediately before veraison. Further experiments demonstrated that 10 and particularly 100 µM melatonin treatments increased the levels of ABA, H2O2, and ethylene production and promoted berry ripening compared with the control treatment, whereas 0.1 and 1.0 µM melatonin did not lead to clear effects. Additionally, the application of inhibitors indicated that ABA, H2O2, and ethylene participated in the regulation of berry ripening induced by melatonin, and the suppression of ethylene biosynthesis produced the greatest inhibitory effects on melatonin-induced berry ripening compared with those of ABA and H2O2. Melatonin also promoted ethylene production via ABA. In summary, 10 and particularly 100 µM melatonin treatments promoted berry ripening, which was accomplished, at least partially, via the other signaling molecules of ABA, H2O2, and particularly ethylene. This research provides insight into melatonin signaling during berry ripening and may advance the application of melatonin to accelerate berry ripening.

2.
Front Plant Sci ; 8: 1426, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28868058

RESUMO

This study assessed the primary impacts of exogenous melatonin (MT) treatment on grape berry metabolism. Exogenous MT treatment increased the endogenous MT content and modified berry ripening. Transcriptomic analysis revealed that the processes of polyphenol metabolism, carbohydrate metabolism and ethylene biosynthesis and signaling were the three most significantly altered biological processes upon MT treatment. Further experiments verified that MT treatment increased the contents of total anthocyanins, phenols, flavonoids and proanthocyanidins in berries. Additionally, the contents of 18 of the 22 detected individual phenolic compounds were enhanced by MT treatment; particularly, the resveratrol content was largely increased concomitantly with the up-regulation of STS gene expression. Meanwhile, MT treatment enhanced the antioxidant capacity of berries. On the other hand, it was indicated that ethylene participated in the regulation of polyphenol metabolism and antioxidant capacity under MT treatment in grape berries. In summary, MT enhances the polyphenol content and antioxidant capacity of grape berries partially via ethylene signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...