Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(1): 554-563, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38112727

RESUMO

The efficiency of the enzyme-free toehold-mediated strand displacement (TMSD) technique is often insufficient to detect single-nucleotide polymorphism (SNP) that possesses only single base pair mismatch discrimination. Here, we report a novel dual base pair mismatch strategy enabling TMSD biosensing for SNP detection under enzyme-free conditions when coupled with catalytic hairpin assembly (CHA) and fluorescence resonance energy transfer (FRET). The strategy is based on a competitive strand displacement reaction mechanism, affected by the thermodynamic stability originating from rationally designed dual base pair mismatch, for the specific recognition of mutant-type DNA. In particular, enzyme-free nucleic acid circuits, such as CHA, emerge as a powerful method for signal amplification. Eventually, the signal transduction of this proposed biosensor was determined by FRET between streptavidin-coated 605 nm emission quantum dots (605QDs, donor) and Cy5/biotin hybridization (acceptor, from CHA) when incubated with each other. The proposed biosensor displayed high sensitivity to the mutant target (MT) with a detection concentration down to 4.3 fM and led to high discrimination factors for all types of mismatches in multiple sequence contexts. As such, the application of this proposed biosensor to investigate mechanisms of the competitive strand displacement reaction further illustrates the versatility of our dual base pair mismatch strategy, which can be utilized for the creation of a new class of biosensors.


Assuntos
Técnicas Biossensoriais , Polimorfismo de Nucleotídeo Único , Pareamento Incorreto de Bases , Hibridização de Ácido Nucleico , Transferência Ressonante de Energia de Fluorescência , Biotina , Técnicas Biossensoriais/métodos
2.
Front Bioeng Biotechnol ; 11: 1279473, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026850

RESUMO

Single-nucleotide polymorphism (SNP) plays a key role in the carcinogenesis of the human genome, and understanding the intrinsic relationship between individual genetic variations and carcinogenesis lies heavily in the establishment of a precise and sensitive SNP detection platform. Given this, a powerful and reliable SNP detection platform is proposed by a flap endonuclease 1 (FEN 1)-driven DNA walker-like reaction coupling with a magnetic bead (MB)-based separation. A carboxyfluorescein (FAM)-labeled downstream probe (DP) was decorated on a streptavidin magnetic bead (SMB). The target DNA, as a walker strand, was captured by hybridization with DP and an upstream probe (UP) to form a three-base overlapping structure and execute the walking function on the surface of SMB. FEN 1 was employed to specifically recognize the three-base overlapping structure and cut the 5'flap at the SNP site to report the walking event and signal amplification. Considering the fact that the fluorescence was labeled on the cleavage and uncleavage sequences of DP and the target DNA-triggered walking event was undistinguishable from the mixtures, magnetic separation came in handy for cleavage probe (CP) isolation and discrimination of the amplified signal from the background signal. In comparison with the conventional DNA walker reaction, this strategy was coupling with SMB-based separation, thus promising a powerful and reliable method for SNP detection and signal amplification.

3.
PLoS Biol ; 21(7): e3002197, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37410725

RESUMO

Drosophila melanogaster Down syndrome cell adhesion molecule 1 (Dscam1) encodes 19,008 diverse ectodomain isoforms via the alternative splicing of exon 4, 6, and 9 clusters. However, whether individual isoforms or exon clusters have specific significance is unclear. Here, using phenotype-diversity correlation analysis, we reveal the redundant and specific roles of Dscam1 diversity in neuronal wiring. A series of deletion mutations were performed from the endogenous locus harboring exon 4, 6, or 9 clusters, reducing to 396 to 18,612 potential ectodomain isoforms. Of the 3 types of neurons assessed, dendrite self/non-self discrimination required a minimum number of isoforms (approximately 2,000), independent of exon clusters or isoforms. In contrast, normal axon patterning in the mushroom body and mechanosensory neurons requires many more isoforms that tend to associate with specific exon clusters or isoforms. We conclude that the role of the Dscam1 diversity in dendrite self/non-self discrimination is nonspecifically mediated by its isoform diversity. In contrast, a separate role requires variable domain- or isoform-related functions and is essential for other neurodevelopmental contexts, such as axonal growth and branching. Our findings shed new light on a general principle for the role of Dscam1 diversity in neuronal wiring.


Assuntos
Síndrome de Down , Proteínas de Drosophila , Animais , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Molécula 1 de Adesão Celular/genética , Molécula 1 de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Síndrome de Down/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Neurônios/metabolismo
4.
Curr Biol ; 32(13): 2908-2920.e4, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35659864

RESUMO

Alternative splicing of Drosophila Dscam1 into 38,016 isoforms provides neurons with a unique molecular code for self-recognition and self-avoidance. A canonical model suggests that the homophilic binding of identical Dscam1 isoforms on the sister branches of mushroom body (MB) axons supports segregation with high fidelity, even when only a single isoform is expressed. Here, we generated a series of mutant flies with a single exon 4, 6, or 9 variant, encoding 1,584, 396, or 576 potential isoforms, respectively. Surprisingly, most of the mutants in the latter two groups exhibited obvious defects in the growth, branching, and segregation of MB axonal sister branches. This demonstrates that the repertoires of 396 and 576 Dscam1 isoforms were not sufficient for the normal patterning of axonal branches. Moreover, reducing Dscam1 levels largely reversed the defects caused by reduced isoform diversity, suggesting a functional link between Dscam1 expression levels and isoform diversity. Taken together, these results indicate that canonical self-avoidance alone does not explain the function of Dscam1 in MB axonal wiring.


Assuntos
Proteínas de Drosophila , Corpos Pedunculados , Animais , Axônios/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Corpos Pedunculados/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
5.
Sci Adv ; 8(4): eabm1763, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35080968

RESUMO

Drosophila melanogaster Dscam1 encodes 38,016 isoforms via mutually exclusive splicing; however, the regulatory mechanism behind this is not fully understood. Here, we found a set of hidden RNA secondary structures that balance the stochastic choice of Dscam1 splice variants (designated balancer RNA secondary structures). In vivo mutational analyses revealed the dual function of these balancer interactions in driving the stochastic choice of splice variants, through enhancement of the inclusion of distal exon 6s by cooperating with docking site-selector pairing to form a stronger multidomain pre-mRNA structure and through simultaneous repression of the inclusion of proximal exon 6s by antagonizing their docking site-selector pairings. Thus, we provide an elegant molecular model based on competition and cooperation between two sets of docking site-selector and balancer pairings, which counteracts the "first-come, first-served" principle. Our findings provide conceptual and mechanistic insight into the dynamics and functions of long-range RNA secondary structures.

6.
Langmuir ; 35(19): 6387-6392, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-30998022

RESUMO

Raman microspectroscopy was employed in this work to study the degradation of a polyanhydride network polymer synthesized from 4-pentenoic anhydride and pentaerythritol tetrakis(3-mercaptopropionate) monomers in order to illustrate the utility of this method and improve the understanding of the polyanhydride degradation and erosion. Disk-shaped polymer samples were immersed in buffer solutions for different periods of time, and hydrolytic degradation was monitored spatially and temporally via kinetic Raman studies at various depths of penetration into the samples. Erosion, meanwhile, was monitored via mass loss measurements. Dispersive Raman microspectroscopy is shown to be a particularly valuable tool for the study of the hydrolytic degradation of these materials. It confirms that these thiol-ene polyanhydrides are indeed surface eroding, while also revealing that degradation starts to occur at the core of samples on a short time scale (less than 5 h). At any given degradation time, there is a concentration gradient of the unreacted anhydride, with the unreacted anhydride concentration increasing from the outer edge to the center of the polymer samples. Further, the anhydride functionality is found to decrease approximately linearly with degradation time at all depths in the samples, though the degradation rate does appear to increase slightly as degradation occurs.

7.
Wiley Interdiscip Rev RNA ; 9(3): e1468, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29423937

RESUMO

Pre-mRNA alternative splicing is an important mechanism used to expand protein diversity in higher eukaryotes, and mutually exclusive splicing is a specific type of alternative splicing in which only one of the exons in a cluster is included in functional transcripts. The most extraordinary example of this is the Drosophila melanogaster Down's syndrome cell adhesion molecule gene (Dscam), which potentially encodes 38,016 different isoforms through mutually exclusive splicing. Mutually exclusive splicing is a unique and challenging model that can be used to elucidate the evolution, regulatory mechanism, and function of alternative splicing. The use of new approaches has not only greatly expanded the mutually exclusive exome, but has also enabled the systematic analyses of single-cell alternative splicing during development. Furthermore, the identification of long-range RNA secondary structures provides a mechanistic framework for the regulation of mutually exclusive splicing (i.e., Dscam splicing). This article reviews recent insights into the identification, underlying mechanism, and roles of mutually exclusive splicing. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.


Assuntos
Processamento Alternativo , Precursores de RNA/genética , RNA Mensageiro/genética , Animais , Éxons , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...