Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrophys J ; 862(2)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30449894

RESUMO

A considerable fraction of the energy in a solar flare is released as suprathermal electrons; such electrons play a major role in energy deposition in the ambient atmosphere, and hence the atmospheric response to flare heating. Historically, the transport of these particles has been approximated through a deterministic approach in which first-order secular energy loss to electrons in the ambient target is treated as the dominant effect, with second-order diffusive terms (in both energy and angle) being generally either treated as a small correction or neglected. However, it has recently been pointed out that while neglect of diffusion in energy may indeed be negligible, diffusion in angle is of the same order as deterministic scattering and hence must be included. Here we therefore investigate the effect of angular scattering on the energy deposition profile in the flaring atmosphere. A relatively simple compact expression for the spatial distribution of energy deposition into the ambient plasma is presented and compared with the corresponding deterministic result. For unidirectional injection there is a significant shift in heating from the lower corona to the upper corona; this shift is much smaller for isotropic injection. We also compare the heating profiles due to return current ohmic heating in the diffusional and deterministic models.

2.
Phys Rev Lett ; 110(15): 151101, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-25167241

RESUMO

The acceleration of charged particles in magnetized plasmas is considered during turbulent multi-island magnetic reconnection. The particle acceleration model is constructed for an ensemble of islands which produce adiabatic compression of the particles. The model takes into account the statistical fluctuations in the compression rate experienced by the particles during their transport in the acceleration region. The evolution of the particle distribution function is described as a simultaneous first- and second-order Fermi acceleration process. While the efficiency of the first-order process is controlled by the average rate of compression, the second-order process involves the variance in the compression rate. Moreover, the acceleration efficiency associated with the second-order process involves both the Eulerian properties of the compression field and the Lagrangian properties of the particles. The stochastic contribution to the acceleration is nonresonant and can dominate the systematic part in the case of a large variance in the compression rate. The model addresses the role of the second-order process, how the latter can be related to the large-scale turbulent transport of particles, and explains some features of the numerical simulations of particle acceleration by multi-island contraction during magnetic reconnection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...