Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 123(23): 230401, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868428

RESUMO

We experimentally simulate nonunitary quantum dynamics using a single-photon interferometric network and study the information flow between a parity-time- (PT-)symmetric non-Hermitian system and its environment. We observe oscillations of quantum-state distinguishability and complete information retrieval in the PT-symmetry-unbroken regime. We then characterize in detail critical phenomena of the information flow near the exceptional point separating the PT-unbroken and PT-broken regimes, and demonstrate power-law behavior in key quantities such as the distinguishability and the recurrence time. We also reveal how the critical phenomena are affected by symmetry and initial conditions. Finally, introducing an ancilla as an environment and probing quantum entanglement between the system and the environment, we confirm that the observed information retrieval is induced by a finite-dimensional entanglement partner in the environment. Our work constitutes the first experimental characterization of critical phenomena in PT-symmetric nonunitary quantum dynamics.

2.
Nat Commun ; 10(1): 2293, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31123259

RESUMO

Topology in quench dynamics gives rise to intriguing dynamic topological phenomena, which are intimately connected to the topology of static Hamiltonians yet challenging to probe experimentally. Here we theoretically characterize and experimentally detect momentum-time skyrmions in parity-time [Formula: see text]-symmetric non-unitary quench dynamics in single-photon discrete-time quantum walks. The emergent skyrmion structures are protected by dynamic Chern numbers defined for the emergent two-dimensional momentum-time submanifolds, and are revealed through our experimental scheme enabling the construction of time-dependent non-Hermitian density matrices via direct measurements in position space. Our work experimentally reveals the interplay of [Formula: see text] symmetry and quench dynamics in inducing emergent topological structures, and highlights the application of discrete-time quantum walks for the study of dynamic topological phenomena.

3.
Phys Rev Lett ; 122(2): 020501, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30720294

RESUMO

Signaled by nonanalyticities in the time evolution of physical observables, dynamic quantum phase transitions (DQPTs) emerge in quench dynamics of topological systems and possess an interesting geometric origin captured by dynamic topological order parameters (DTOPs). In this Letter, we report the experimental study of DQPTs using discrete-time quantum walks of single photons. We simulate quench dynamics between distinct Floquet topological phases using quantum-walk dynamics and experimentally characterize DQPTs and the underlying DTOPs through interference-based measurements. The versatile photonic quantum-walk platform further allows us to experimentally investigate DQPTs for mixed states and in parity-time-symmetric nonunitary dynamics for the first time. Our experiment directly confirms the relation between DQPTs and DTOPs in quench dynamics of topological systems and opens up the avenue of simulating emergent topological phenomena using discrete-time quantum-walk dynamics.

4.
Opt Express ; 25(25): 31462-31470, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29245821

RESUMO

Leggett-Garg inequalities are tests of macroscopic realism that can be violated by quantum mechanics. In this letter, we realise photonic Leggett-Garg tests on a three-level system and implement measurements that admit three distinct measurement outcomes, rather than the usual two. In this way we obtain violations of three- and four-time Leggett-Garg inequalities that are significantly in excess of those obtainable in standard Leggett-Garg tests. We also report violations the quantum-witness equality up to the maximum permitted for a three-outcome measurement. Our results highlight differences between spatial and temporal correlations in quantum mechanics.

5.
Phys Rev Lett ; 119(22): 220403, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29286764

RESUMO

Contextuality is an essential characteristic of quantum theory, and supplies the power for many quantum information processes. Previous tests of contextuality focus mainly on the probability distribution of measurement results. However, a test of contextuality can be formulated in terms of entropic inequalities whose violations imply information deficit in the studied system. This information deficit has not been observed on a single local system. Here we report the first experimental detection of information deficit in an entropic test of quantum contextuality based on photonic setup. The corresponding inequality is violated with more than 13 standard deviations.

6.
Opt Express ; 25(15): 17904-17910, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28789293

RESUMO

Uncertainty relations are the hallmarks of quantum physics and have been widely investigated since its original formulation. To understand and quantitatively capture the essence of preparation uncertainty in quantum interference, the uncertainty relations for unitary operators need to be investigated. Here, we report the first experimental investigation of the uncertainty relations for general unitary operators. In particular, we experimentally demonstrate the uncertainty relation for general unitary operators proved by Bagchi and Pati [ Phys. Rev. A94, 042104 (2016)], which places a non-trivial lower bound on the sum of uncertainties and removes the triviality problem faced by the product of the uncertainties. The experimental findings agree with the predictions of quantum theory and respect the new uncertainty relation.

7.
Sci Rep ; 7(1): 2183, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28526885

RESUMO

We experimentally demonstrate a photonic quantum simulator: by using a two-spin Ising chain (an isolated dimer) as an example, we encode the wavefunction of the ground state with a pair of entangled photons. The effect of magnetic fields, leading to a critical modification of the correlation between two spins, can be simulated by just local operations. With the ratio of simulated magnetic fields and coupling strength increasing, the ground state of the system changes from a product state to an entangled state and back to another product state. The simulated ground states can be distinguished and the transformations between them can be observed by measuring correlations between photons. This simulation of the Ising model with linear quantum optics opens the door to the future studies which connect quantum information and condensed matter physics.

8.
Phys Rev Lett ; 119(13): 130501, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29341719

RESUMO

We report the experimental detection of bulk topological invariants in nonunitary discrete-time quantum walks with single photons. The nonunitarity of the quantum dynamics is enforced by periodically performing partial measurements on the polarization of the walker photon, which effectively introduces loss to the dynamics. The topological invariant of the nonunitary quantum walk is manifested in the quantized average displacement of the walker, which is probed by monitoring the photon loss. We confirm the topological properties of the system by observing localized edge states at the boundary of regions with different topological invariants. We further demonstrate the robustness of both the topological properties and the measurement scheme of the topological invariants against disorder.

9.
Sci Rep ; 6: 20095, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26822563

RESUMO

We introduce and analyze a one-dimensional quantum walk with two time-independent rotations on the coin. We study the influence on the property of quantum walk due to the second rotation on the coin. Based on the asymptotic solution in the long time limit, a ballistic behaviour of this walk is observed. This quantum walk retains the quadratic growth of the variance if the combined operator of the coin rotations is unitary. That confirms no localization exhibits in this walk. This result can be extended to the walk with multiple time-independent rotations on the coin.

10.
Opt Express ; 23(14): 18422-7, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26191900

RESUMO

Quantum algorithm acts as an important role in quantum computation science, not only for providing a great vision for solving classically unsolvable problems, but also due to the fact that it gives a potential way of understanding quantum physics. We experimentally realize a quantum speed-up algorithm with a single qudit via linear optics and prove that even a single qudit is enough for designing an oracle-based algorithm which can solve a certain problem twice faster than any classical algorithm. The algorithm can be generalized to higher-dimensional systems with the same two-to-one speed-up ratio.

11.
Phys Rev Lett ; 114(20): 203602, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-26047229

RESUMO

We perform generalized measurements of a qubit by realizing the qubit as a coin in a photonic quantum walk and subjecting the walker to projective measurements. Our experimental technique can be used to realize, photonically, any rank-1 single-qubit positive-operator-valued measure via constructing an appropriate interferometric quantum-walk network and then projectively measuring the walker's position at the final step.

12.
Sci Rep ; 5: 7623, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25557504

RESUMO

Quantum phase transitions occur when the ground state of a Hamiltonian undergoes qualitative changes with a control parameter changing. In this paper we consider a particular system--an Isng-type spin ring with competing many-body interactions. Depending on the relative strength interactions, the ground state of the system is either a product state or entangled state. We implement the system in a cavity-assisted neutral atomic simulator and study the non-locality and entanglement of the simulated ground state of an Ising-type three-spin ring with the control parameter changing. The simplicity of the setup and its robustness to noise give it a great practicality within the framework of current experimental technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...