Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomicro Lett ; 15(1): 167, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37395847

RESUMO

Perovskite solar cells (PSCs) have attracted aggressive attention in the photovoltaic field in light of the rapid increasing power conversion efficiency. However, their large-scale application and commercialization are limited by the toxicity issue of lead (Pb). Among all the lead-free perovskites, tin (Sn)-based perovskites have shown potential due to their low toxicity, ideal bandgap structure, high carrier mobility, and long hot carrier lifetime. Great progress of Sn-based PSCs has been realized in recent years, and the certified efficiency has now reached over 14%. Nevertheless, this record still falls far behind the theoretical calculations. This is likely due to the uncontrolled nucleation states and pronounced Sn (IV) vacancies. With insights into the methodologies resolving both issues, ligand engineering-assisted perovskite film fabrication dictates the state-of-the-art Sn-based PSCs. Herein, we summarize the role of ligand engineering during each state of film fabrication, ranging from the starting precursors to the ending fabricated bulks. The incorporation of ligands to suppress Sn2+ oxidation, passivate bulk defects, optimize crystal orientation, and improve stability is discussed, respectively. Finally, the remained challenges and perspectives toward advancing the performance of Sn-based PSCs are presented. We expect this review can draw a clear roadmap to facilitate Sn-based PSCs via ligand engineering.

2.
Light Sci Appl ; 12(1): 170, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37419880

RESUMO

White organic light-emitting diodes (WOLEDs) is a new generation of lighting technology and has stimulated wide-ranging studies. Despite the advantage of simple device structure, single-emitting-layer WOLEDs (SEL-WOLEDs) still face the challenges of difficult material screening and fine energy level regulation. Herein, we report efficient SEL-WOLEDs with a sky-blue emitting cerium(III) complex Ce-TBO2Et and an orange-red emitting europium(II) complex Eu(Tp2Et)2 as the emitters, showing a maximum external quantum efficiency of 15.9% and Commission Internationale de l'Eclairage coordinates of (0.33, 0.39) at various luminances. Most importantly, the electroluminescence mechanism of direct hole capture and hindered energy transfer between the two emitters facilitate a manageable weight doping concentration of 5% for Eu(Tp2Et)2, avoiding the low concentration (<1%) of the low-energy emitter in typical SEL-WOLEDs. Our results indicate that d-f transition emitters may circumvent fine energy level regulation and provide development potential for SEL-WOLEDs.

3.
Angew Chem Int Ed Engl ; 62(24): e202302192, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37020235

RESUMO

Doublet emission from open-shell molecules has demonstrated its research and application value in recent years. However, understandings of the photoluminescence mechanism of open-shell molecules are far less than that of closed-shell molecules, leading to challenges in molecular design of efficient doublet emission systems. Here we report a cerium(III) 4-(9H-carbozol-9-yl)phenyl-tris(pyrazolyl)borate complex Ce(CzPhTp)3 with a new luminescence mechanism of delayed doublet emission, which also represents the first example with metal-centered delayed photoluminescence. The energy gap between the doublet and triplet excited states of Ce(CzPhTp)3 is reduced by the management of the inner and outer coordination spheres, thereby promoting efficient energy transfer between the two excited states and activating the delayed emission. The photoluminescence mechanism discovered may provide a new way for the design of efficient doublet emission and bring insights into rational molecular design and energy level regulation in open-shell molecules.

4.
Inorg Chem ; 62(17): 6560-6564, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37083359

RESUMO

Herein, a deuteration strategy is proposed to enhance the photoluminescence quantum yield (PLQY) of a Dy(III) complex. The perdeuterated Dy(III) complex Dy(D-DPPOP)3 (D-DPPOP = 6-[bis(phenyl-d5)phosphoryl]picolinate-d3) exhibits a high PLQY of up to 72% in deuterated chloroform, which is 4.8 times higher than that of the nondeuterated Dy(III) complex Dy(DPPOP)3. Then the corresponding ultraviolet-excited light-emitting diode is fabricated, showing a warm-white light with a Commission Internationale de l'Eclairage (CIE) of (0.36, 0.41) and a color temperature of around 4800 K. The deuteration strategy to improve the PLQY of the Dy(III) complex is proved in this work, and it will inspire the further design of white-emission Dy(III) complexes with high efficiency.

5.
Mater Horiz ; 10(2): 625-631, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36515011

RESUMO

A new heteronuclear EuII-MnII complex [Eu(N2O6)]MnBr4 (N2O6 = 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane) is designed and synthesized, which shows an intense green emission from MnII with a near-unity photoluminescence quantum yield. Measurement of excited-state dynamics demonstrated the sensitization process from EuII to MnII, which represents the first example of f → d molecular sensitization. Due to the large optical absorption cross-section of the EuII center, [Eu(N2O6)]MnBr4 shows an emission intensity 7 to 2500 times stronger than that of the SrII-MnII control complex [Sr(N2O6)]MnBr4 upon the excitation of near ultraviolet to blue light.

6.
Molecules ; 27(22)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36432156

RESUMO

Rare earth europium(II) complexes based on d-f transition luminescence have characteristics of broad emission spectra, tunable emission colors and short excited state lifetimes, showing great potential in display, lighting and other fields. In this work, four complexes of Eu(II) and bis(pyrazolyl)borate ligands, where pyrazolyl stands for pyrazolyl, 3-methylpyrazolyl, 3,5-dimethylpyrazolyl or 3-trifluoromethylpyrazole, were designed and synthesized. Due to the varied steric hindrance of the ligands, different numbers of solvent molecules (tetrahydrofuran) are participated to saturate the coordination structure. These complexes showed blue-green to yellow emissions with maximum wavelength in the range of 490-560 nm, and short excited state lifetimes of 30-540 ns. Among them, the highest photoluminescence quantum yield can reach 100%. In addition, when the complexes were heated under vacuum or nitrogen atmosphere, they finally transformed into the complexes of Eu(II) and corresponding tri(pyrazolyl)borate ligands and sublimated away.

7.
Inorg Chem ; 61(35): 14164-14172, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35994595

RESUMO

Luminescent cerium(III) complexes based on the d-f transition have characteristics of broad emission spectra, tunable emission colors, and short excited state lifetimes, showing potential applications in display, lighting, and other fields. Thus it is important to construct luminescent Ce(III) complexes with high photoluminescence efficiency and good stability. In this work, five Ce(III) complexes with dihydrobis(pyrazolyl)borate or diphenylbis(pyrazolyl)borate ligands, where pyrazolyl stands for pyrazolyl, 3-methylpyrazolyl, or 3,5-dimethylpyrazolyl, were designed and synthesized, showing emission colors from deep blue to yellow with a maximum wavelength in the range of 390-560 nm, short excited state lifetimes of 30-80 ns, and photoluminescence quantum yields exceeding 75% in solid powder. By comparing these complexes, it is found that higher photoluminescence efficiency and better thermal/air stability could be achieved in the complexes with dihydrobis(pyrazolyl)borate ligands.

8.
J Phys Chem Lett ; 13(12): 2686-2694, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35302781

RESUMO

Organic light-emitting diodes (OLEDs) are considered as next-generation displays and lighting technologies. During the past three decades, various luminescent materials such as fluorescence, phosphorescence, and thermally activated delayed fluorescence materials have been subsequently investigated as emitters. To date, blue OLEDs are still the bottleneck as compared to red and green ones because of the lack of efficient emitters with simultaneous high exciton utilization efficiency and long-term stability. Recently, d-f transition rare earth complexes have been reported as new emitters in OLEDs with potential high efficiency and stability. In this Perspective, we present a brief introduction to OLEDs and an overview of the previous electroluminescence study on d-f transition rare earth complexes. This is followed by our recent developments in cerium(III) complex- and europium(II) complex-based OLEDs. We finally discuss the challenges and opportunities for OLED study based on d-f transition rare earth complexes.

9.
Dalton Trans ; 51(8): 3234-3240, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35129560

RESUMO

Red, green and blue emitting materials, the three primary colors, are very important in lighting and display. Red-emitting Eu(III) complexes and green-emitting Tb(III) complexes exhibit high color purity and photoluminescence (PL) efficiency. However, it is difficult to realize efficient blue emission based on f-f transition. Alternatively, Ce3+ with d-f transition can be used to construct blue-emitting lanthanide complexes. Herein, we synthesized two heteroleptic Ce(III) complexes Ce-1Me-OTf and Ce-2Me-OTf based on hydrotris(3-methylpyrazolyl)borate (TpMe) and hydrotris(3,5-dimethylpyrazolyl)borate (TpMe2) ligands, respectively, in which triflate is used as the ancillary ligand. Ce-1Me-OTf and Ce-2Me-OTf exhibit strong blue emission in dichloromethane and as powder with maximum emission wavelengths in the range of 424-436 nm. Both complexes demonstrate near-unity photoluminescence quantum yields (PLQYs) in powder and good sublimation properties. In particular, Ce-1Me-OTf emits deep blue light both in dichloromethane and as powder with Commission Internationale de l'Eclairage (CIE) coordinates of (0.15, 0.07) and (0.15, 0.06), respectively, which are close to the standard blue points recommended by the National Television System Committee (NTSC) and the European Broadcast Union (EBU).

10.
Inorg Chem ; 60(23): 18103-18111, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34779606

RESUMO

Compared with red and green organic light-emitting diodes (OLEDs), blue is the bottleneck that restricts the wide development of OLEDs from being the next-generation technology for displays and lighting. As a new type of emitter, a Ce(III) complex shows many satisfactory advantages, such as a short excited-state lifetime, 100% theoretical exciton utilization efficiency, and tunable emission color. Herein we synthesized three heteroleptic Ce(III) complexes Ce(TpMe2)2(dtfpz), Ce(TpMe2)2(dmpz), and Ce(TpMe2)2(dppz) with the hydrotris(3,5-dimethylpyrazolyl)borate (TpMe2) main ligand and different substituted pyrazole ancillary ligands, namely, 3,5-di(trifluomethyl)pyrazolyl (dtfpz), 3,5-dimethylpyrazolyl (dmpz), and 3,5-diphenylpyrazolyl (dppz), and studied their structures and luminescence properties. All the Ce(III) complexes exhibited a near-unity photoluminescence quantum yield both in solution and as a powder with maximum emission wavelengths in the range of 450-486 nm. The OLED employing Ce(TpMe2)2(dppz) as the emitter showed the best performance, including a turn-on voltage, maximum luminance, and external quantum efficiency of 3.2 V, 29 200 cd m-2, and 12.5%, respectively.

11.
Natl Sci Rev ; 8(2): nwaa193, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34691576

RESUMO

In the field of RGB diodes, development of a blue organic light-emitting diode (OLED) is a challenge because of the lack of an emitter which simultaneously has a short excited state lifetime and a high theoretical external quantum efficiency (EQE). We demonstrate herein a blue emissive rare earth cerium(III) complex Ce-2 showing a high photoluminescence quantum yield of 95% and a short excited state lifetime of 52.0 ns in doped film, which is considerably faster than that achieved in typical efficient phosphorescence or thermally activated delayed fluorescence emitters (typical lifetimes >1 µs). The corresponding OLED shows a maximum EQE up to 20.8% and a still high EQE of 18.2% at 1000 cd m-2, as well as an operation lifetime 70 times longer than that of a classic phosphorescence OLED. The excellent performance indicates that cerium(III) complex could be a candidate for efficient and stable blue OLEDs because of its spin- and parity-allowed d-f transition from the Ce3+ ion.

12.
ACS Appl Mater Interfaces ; 13(37): 44157-44164, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34505783

RESUMO

Tin (Sn)-based perovskite is one of the most promising candidates for lead (Pb)-free perovskite light-absorbing materials applied in solar cells. However, the intrinsic Sn vacancy (VSn) defects seriously hinder the device performance, making the reported maximum power efficiency (PCE) of Sn-based perovskite solar cells (PSCs) far behind those of Pb-based ones. During the study, SnF2 has been demonstrated as an indispensable Sn compensator additive to improve the device performance. Considering that the default use of SnF2 and the selection of a Sn compensator has also been limited to tin(II) halides, i.e., SnCl2, SnBr2, and SnI2, the role and work mechanism of the Sn compensator have not yet been clarified clearly. Herein, a new type of Sn compensator, tin(II) acetylacetonate [Sn (acac)2], is introduced into Sn-based PSCs. It is found that in addition to tin compensation, the organic ligand acac- can coordinate with Sn2+ in the precursor solution and improve the crystallization process of perovskites. Consequently, the maximum PCE of formamidinium tin triiodide (FASnI3) solar cells is enhanced from 3.88 to 7.27% using Sn (acac)2 as the Sn compensator.

13.
ACS Appl Mater Interfaces ; 13(38): 45686-45695, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34529401

RESUMO

Organic light-emitting diodes (OLEDs) have had commercial success in displays and lighting. Compared to red and green OLEDs, blue OLEDs are still the bottleneck because the high-energy and long-lived triplet exciton in traditional blue OLEDs causes the short operational lifetime of the device. As a new type emitter, lanthanide complexes with a 5d-4f transition could have short excited-state lifetimes on the order of nanoseconds. To achieve a high-efficiency 5d-4f transition, we systematically tuned the steric and electronic effects of tripodal tris(pyrazolyl)borate ligands and drew a full picture of their Ce(III) complexes. Intriguingly, all of these complexes show bright blue emission with high photoluminescence quantum yields exceeding 95% and short decay lifetimes of 35-73 ns both in the solid powder and in dichloromethane solutions. Using the Ce(III) complex emitter, we show a blue OLED with a maximum external quantum efficiency of 14.1% and a maximum luminance of 33,160 cd m-2, and the specific electroluminescence mechanism of direct exciton formation on the Ce(III) ion with a near-unity exciton utilization efficiency is also confirmed. The discovered photoluminescence and electroluminescence property-structure relationships may shed new light on the rational design of highly efficient lanthanide-based blue emitters and their optoelectronic devices such as OLEDs.

14.
Chem Commun (Camb) ; 57(41): 5082-5085, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33890586

RESUMO

Two polymorphs of Cu[(3,4-bis(diphenylphosphino)thiophene)(bis(pyrazol-1-yl)borohydrate)] (1) were isolated. The blue luminescent crystals have evident mechanochromic luminescent (MCL) properties. Based on photophysical and structural analysis, the pore structure in the blue crystals is considered to be the main reason for the MCL properties.

15.
Nat Commun ; 11(1): 5218, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060573

RESUMO

Divalent europium 5d-4f transition has aroused great attention in many fields, in a way of doping Eu2+ ions into inorganic solids. However, molecular Eu2+ complexes with 5d-4f transition are thought to be too air-unstable to explore their applications. In this work, we synthesized four Eu2+-containing azacryptates EuX2-Nn (X = Br, I, n = 4, 8) and systematically studied the photophysical properties in crystalline samples and solutions. Intriguingly, the EuX2-N8 complexes exhibit near-unity photoluminescence quantum yield, good air-/thermal-stability and mechanochromic property (X = I). Furthermore, we proved the application of Eu2+ complexes in organic light-emitting diodes (OLEDs) with high efficiency and luminance. The optimized device employing EuI2-N8 as emitter has the best performance as the maximum luminance, current efficiency, and external quantum efficiency up to 25470 cd m-2, 62.4 cd A-1, and 17.7%, respectively. Our work deepens the understanding of structure-property relationship in molecular Eu2+ complexes and could inspire further research on application in OLEDs.

16.
Light Sci Appl ; 9: 157, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32963769

RESUMO

Compared to red and green organic light-emitting diodes (OLEDs), blue OLEDs are still the bottleneck due to the lack of efficient emitters with simultaneous high exciton utilization efficiency (EUE) and short excited-state lifetime. Different from the fluorescence, phosphorescence, thermally activated delayed fluorescence (TADF), and organic radical materials traditionally used in OLEDs, we demonstrate herein a new type of emitter, cerium(III) complex Ce-1 with spin-allowed and parity-allowed d-f transition of the centre Ce3+ ion. The compound exhibits a high EUE up to 100% in OLEDs and a short excited-state lifetime of 42 ns, which is considerably faster than that achieved in efficient phosphorescence and TADF emitters. The optimized OLEDs show an average maximum external quantum efficiency (EQE) of 12.4% and Commission Internationale de L'Eclairage (CIE) coordinates of (0.146, 0.078).

17.
Angew Chem Int Ed Engl ; 59(43): 19011-19015, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-32643262

RESUMO

Luminescent EuII complexes with a characteristic 5d-4f transition have potential applications in many fields. However, their instability in ambient conditions impedes further exploration and application. Herein, we report two new EuII complexes, bis[hydrotris(3-trifluoromethylpyrazolyl)borate]europium(II) (Eu-1) and bis[hydrotris(3-methylpyrazolyl)borate]europium(II) (Eu-2). Intriguingly, the blue emissive Eu-1 showed high air stability arising from fluorine protection and close molecular packing, as maintaining a photoluminescence quantum yield (PLQY) of 91 % (initial 96 %) upon exposure to air over 2200 hours. While the orange emissive Eu-2 showed a maximum luminance of 30620 cd m-2 , and a maximum external quantum efficiency (EQE) of 6.5 %, corresponding to an exciton utilization efficiency around 100 % in organic light-emitting diodes (OLEDs). These results could inspire further research on stable and efficient EuII complexes and their application in OLEDs.

18.
Inorg Chem ; 59(13): 8800-8808, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32515946

RESUMO

We report a novel family of lanthanide complexes Ln(DPPOP)3 (Ln = Pr, Nd, Sm, Eu, Tb, Dy, Er, and Yb) employing anionic tridentate (O∧N∧O) ligand 6-(diphenylphosphoryl)picolinate (DPPOP). Crystal structures of the complexes reveal that each lanthanide ion is nine-coordinated by three tridentate ligands. In the crystals, 1D channels are found, which can absorb and eliminate water reversibly. DPPOP possesses high triplet energy and can sensitize a series of lanthanide ions. An energy transfer mechanism is proposed through the higher excited states of the lanthanide ions. In the solid state, remarkably high quantum yields in the visible range are obtained: 81% for Eu(III), 97% for Tb(III), 13% for Dy(III), and 4% for Sm(III) complex.

19.
Adv Mater ; 32(31): e1907623, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32583926

RESUMO

The development of tin (Sn)-based perovskite solar cells (PSCs) is hindered by their lower power conversion efficiency and poorer stability compared to the lead-based ones, which arise from the easy oxidation of Sn2+ to Sn4+ . Herein, phenylhydrazine hydrochloride (PHCl) is introduced into FASnI3 (FA = NH2 CH  NH2 + ) perovskite films to reduce the existing Sn4+ and prevent the further degradation of FASnI3 , since PHCl has a reductive hydrazino group and a hydrophobic phenyl group. Consequently, the device achieves a record power conversion efficiency of 11.4% for lead-free PSCs. Besides, the unencapsulated device displays almost no efficiency reduction in a glove box over 110 days and shows efficiency recovery after being exposed to air, due to a proposed self-repairing trap state passivation process.

20.
Angew Chem Int Ed Engl ; 59(21): 8210-8217, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-31985121

RESUMO

As a kind of photoluminescent material, CuI complexes have many advantages such as adjustable emission, variable structures, and low cost, attracting attention in many fields. In this work, two novel two-coordinate CuI -N-heterocyclic carbene complexes were synthesized, and they exhibit unique dual emission properties, fluorescence and phosphorescence. The crystal structure, packing mode, and photophysical properties under different conditions were systematically studied, proving the emissive mechanism to be the locally excited state of the carbazole group. Based on this mechanism, ultralong room-temperature phosphorescence (RTP) with a lifetime of 140 ms is achieved by selective deuteration of the carbazole group. These results deepen the understanding of the luminescence mechanism and design strategy for two-coordinate CuI complexes, and prove their potential in applications as ultralong RTP materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...