Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Proced Online ; 15(1): 2, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23316759

RESUMO

BACKGROUND: With the prompt developments of regenerative medicine, the potential clinical applications of human embryonic stem cells have attracted intense attention. However, the labor-intensive and complex manual cell selection processes required during embryonic stem cell culturing have seriously limited large-scale production and broad applications. Thus, availability of a label-free, non-invasive platform to replace the current cumbersome manual selection has become a critical need. RESULTS: A non-invasive, label-free, and time-efficient optical platform for determining the quality of human embryonic stem cell colonies was developed by analyzing the scattering signals from those stem cell colonies. Additionally, confocal microscopy revealed that the cell colony morphology and surface structures were correlated with the resulting characteristic light scattering patterns. Standard immunostaining assay (Oct-4) was also utilized to validate the quality-determination from this light scattering protocol. The platform developed here can therefore provide identification accuracy of up to 87% for colony determination. CONCLUSIONS: Our study here demonstrated that light scattering patterns can serve as a feasible alternative approach to replace conventional manual selection for human embryonic stem cell cultures.

2.
Nanoscale Res Lett ; 7(1): 126, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22333433

RESUMO

Human embryonic stem cells [hESCs] are able to differentiate into specific lineages corresponding to regulated spatial and temporal signals. This unique attribute holds great promise for regenerative medicine and cell-based therapy for many human diseases such as spinal cord injury [SCI] and multiple sclerosis [MS]. Carbon nanotubes [CNTs] have been successfully used to promote neuronal differentiation, and silk has been widely applied in tissue engineering. This study aims to build silk-CNT composite scaffolds for improved neuron differentiation efficiency from hESCs.Two neuronal markers (ß-III tubulin and nestin) were utilized to determine the hESC neuronal lineage differentiation. In addition, axonal lengths were measured to evaluate the progress of neuronal development. The results demonstrated that cells on silk-CNT scaffolds have a higher ß-III tubulin and nestin expression, suggesting augmented neuronal differentiation. In addition, longer axons with higher density were found to associate with silk-CNT scaffolds.Our silk-CNT-based composite scaffolds can promote neuronal differentiation of hESCs. The silk-CNT composite scaffolds developed here can serve as efficient supporting matrices for stem cell-derived neuronal transplants, offering a promising opportunity for nerve repair treatments for SCI and MS patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...