Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 775, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39118001

RESUMO

BACKGROUND: Appropriate regulation of genes expressed in oocytes and embryos is essential for acquisition of developmental competence in mammals. Here, we hypothesized that several genes expressed in oocytes and pre-implantation embryos remain unknown. Our goal was to reconstruct the transcriptome of oocytes (germinal vesicle and metaphase II) and pre-implantation cattle embryos (blastocysts) using short-read and long-read sequences to identify putative new genes. RESULTS: We identified 274,342 transcript sequences and 3,033 of those loci do not match a gene present in official annotations and thus are potential new genes. Notably, 63.67% (1,931/3,033) of potential novel genes exhibited coding potential. Also noteworthy, 97.92% of the putative novel genes overlapped annotation with transposable elements. Comparative analysis of transcript abundance identified that 1,840 novel genes (recently added to the annotation) or potential new genes were differentially expressed between developmental stages (FDR < 0.01). We also determined that 522 novel or potential new genes (448 and 34, respectively) were upregulated at eight-cell embryos compared to oocytes (FDR < 0.01). In eight-cell embryos, 102 novel or putative new genes were co-expressed (|r|> 0.85, P < 1 × 10-8) with several genes annotated with gene ontology biological processes related to pluripotency maintenance and embryo development. CRISPR-Cas9 genome editing confirmed that the disruption of one of the novel genes highly expressed in eight-cell embryos reduced blastocyst development (ENSBTAG00000068261, P = 1.55 × 10-7). CONCLUSIONS: Our results revealed several putative new genes that need careful annotation. Many of the putative new genes have dynamic regulation during pre-implantation development and are important components of gene regulatory networks involved in pluripotency and blastocyst formation.


Assuntos
Blastocisto , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Oócitos , Animais , Bovinos , Desenvolvimento Embrionário/genética , Oócitos/metabolismo , Blastocisto/metabolismo , Transcriptoma , Anotação de Sequência Molecular , Perfilação da Expressão Gênica , Feminino
2.
Metabolites ; 14(7)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39057707

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a range of disorders characterized by lipid accumulation in hepatocytes. Although this spectrum of disorders is associated with adult obesity, recent evidence suggests that this condition could also occur independently of obesity, even in children. Previously, we reported that pigs fed a formula containing medium-chain fatty acids (MCFAs) developed hepatic steatosis and weighed less than those fed an isocaloric formula containing long-chain fatty acids (LCFAs). Our objective was to determine the association between NAFLD and the skeletal muscle transcriptome in response to energy and lipid intake. Neonatal pigs were fed one of three formulas: a control formula (CONT, n = 6) or one of two isocaloric high-energy formulas containing either long (LCFA, n = 6) or medium (MCFA, n = 6) chain fatty acids. Pigs were fed for 22 d, and tissues were collected. Body weight at 20 and 22 d was greater for LCFA-fed pigs than their CONT or MCFA counterparts (p < 0.005). Longissimus dorsi weight was greater for LCFA compared with MCFA, while CONT was intermediate (p < 0.05). Lean gain and protein deposition were greater for LCFA than for CONT and MCFA groups (p < 0.01). Transcriptomic analysis revealed 36 differentially expressed genes (DEGs) between MCFA and LCFA, 53 DEGs between MCFA and CONT, and 52 DEGs between LCFA and CONT (FDR < 0.2). Feeding formula high in MCFAs resulted in lower body and muscle weights. Transcriptomics data suggest that the reduction in growth was associated with a disruption in cholesterol metabolism in skeletal muscles.

3.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38720650

RESUMO

Infertility or subfertility impacts approximately 5% and 15% of dairy and beef heifers (Bos taurus), respectively. Heifers that do not produce a calf within an optimum window of time have a significant negative impact on the profitability and sustainability of the cattle industry. Selection of heifers based on their fertility potential remains a challenge yet to be resolved. Here, we tested the hypothesis that heifers of different fertility potential have differing metabolome signatures in their plasma. We obtained blood from Bos taurus heifers at their first artificial insemination and processed the samples to separate the plasma. The heifers were classified based on their reproductive outcome as fertile (pregnant and delivered a calf after their first artificial insemination (AI)) or sub-fertile (Angus heifers: no pregnancy after two AI and exposure to a bull; Holstein heifers: no pregnancy by the third AI). We tested the relative abundance of 140 metabolites obtained from 22 heifers (Angus fertile n = 5, Angus sub-fertile n = 7, Holstein fertile N = 5, Holstein sub-fertile N = 5). The metabolite 2-Dehydro-D-gluconate (C6H10O7) was significantly more abundant in the plasma of sub-fertile heifers in both breeds (1.4-fold, false discovery rate < 0.1). In the context that a small proportion of circulating metabolites in the plasma were quantified in this study, the results show that the metabolomic profile in the blood stream may be associated with heifer fertility potential.


During the development of heifers for cow replacement, producers must invest substantial resources in each animal for over 15 mo. While the use of resources is equivalent across heifers being developed on a farm, a substantial proportion of the animals will not produce a calf (approximately 5% and approximately 15% of dairy and beef heifers, respectively). In this study, we identified one metabolite with higher abundance in the plasma of dairy and beef heifers with low chances of producing a calf by 25 mo of age.


Assuntos
Fertilidade , Animais , Bovinos/sangue , Feminino , Gluconatos , Gravidez , Inseminação Artificial/veterinária , Metaboloma , Doenças dos Bovinos/sangue
4.
Biol Reprod ; 111(1): 43-53, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38519105

RESUMO

A high incidence of pregnancy failures occurs in cattle during the second week of pregnancy as blastocysts transition into an elongated conceptus. This work explored whether interleukin-6 supplementation during in vitro embryo production would improve subsequent conceptus development. Bovine embryos were treated with 0 or 100 ng/mL recombinant bovine interleukin-6 beginning on day 5 post-fertilization. At day 7.5 post-fertilization, blastocysts were transferred into estrus synchronized beef cows (n = 5 recipients/treatment, 10 embryos/recipient). Seven days after transfer (day 14.5), cows were euthanized to harvest reproductive tracts and collect conceptuses. Individual conceptus lengths and stages were recorded before processing for RNA sequencing. Increases in conceptus recovery, length, and the proportion of tubular and filamentous conceptuses were detected in conceptuses derived from interleukin-6-treated embryos. The interleukin-6 treatment generated 591 differentially expressed genes in conceptuses (n = 9-10/treatment). Gene ontology enrichment analyses revealed changes in transcriptional regulation, DNA-binding, and antiviral actions. Only a few differentially expressed genes were associated with extraembryonic development, but several differentially expressed genes were associated with embryonic regulation of transcription, mesoderm and ectoderm development, organogenesis, limb formation, and somatogenesis. To conclude, this work provides evidence that interleukin-6 treatment before embryo transfer promotes pre-implantation conceptus development and gene expression in ways that resemble the generation of a robust conceptus containing favorable abilities to survive this critical period of pregnancy.


Assuntos
Desenvolvimento Embrionário , Interleucina-6 , Transcriptoma , Animais , Bovinos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-6/farmacologia , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Transcriptoma/efeitos dos fármacos , Técnicas de Cultura Embrionária/veterinária , Gravidez , Fertilização in vitro/veterinária , Blastocisto/efeitos dos fármacos , Blastocisto/metabolismo , Transferência Embrionária/veterinária , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Embrião de Mamíferos/efeitos dos fármacos
5.
STAR Protoc ; 5(1): 102940, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460133

RESUMO

The use of CRISPR-Cas9 ribonucleoproteins has revolutionized manipulation of genomes. Here, we present a protocol for the electroporation of CRISPR-Cas for DNA and RNA targeting in Bos taurus zygotes. First, we describe steps for production and preparation of presumptive zygotes for electroporation. The first electroporation introduces ribonucleoproteins formed by Cas9D10A with two guide RNAs to target DNA, and the second introduces the same ribonucleoprotein complex to target DNA plus Cas13a with one guide RNA to target RNAs. For complete details on the use and execution of this protocol, please refer to Nix et al.1.


Assuntos
Sistemas CRISPR-Cas , Zigoto , Bovinos , Animais , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , RNA Guia de Sistemas CRISPR-Cas , RNA/genética , Eletroporação/métodos , DNA/genética , Ribonucleoproteínas/genética
6.
PNAS Nexus ; 2(11): pgad343, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37954164

RESUMO

CRISPR-Cas ribonucleoproteins (RNPs) are important tools for gene editing in preimplantation embryos. However, the inefficient production of biallelic deletions in cattle zygotes has hindered mechanistic studies of gene function. In addition, the presence of maternal RNAs that support embryo development until embryonic genome activation may cause confounding phenotypes. Here, we aimed to improve the efficiency of biallelic deletions and deplete specific maternal RNAs in cattle zygotes using CRISPR-Cas editing technology. Two electroporation sessions with Cas9D10A RNPs targeting exon 1 and the promoter of OCT4 produced biallelic deletions in 91% of the embryos tested. In most cases, the deletions were longer than 1,000 nucleotides long. Electroporation of Cas13a RNPs prevents the production of the corresponding proteins. We electroporated Cas9D10A RNPs targeting exon 1, including the promoter region, of OCT4 in two sessions with inclusion of Cas13a RNPs targeting OCT4 mRNAs in the second session to ablate OCT4 function in cattle embryos. A lack of OCT4 resulted in embryos arresting development prior to blastocyst formation at a greater proportion (13%) than controls (31.6%, P < 0.001). The few embryos that developed past the morula stage did not form a normal inner cell mass. Transcriptome analysis of single blastocysts, confirmed to lack exon 1 and promoter region of OCT4, revealed a significant (False Discovery Rate, FDR < 0.1) reduction in transcript abundance of many genes functionally connected to stemness, including markers of pluripotency (CADHD1, DPPA4, GNL3, RRM2). The results confirm that OCT4 is a key regulator of genes that modulate pluripotency and is required to form a functional blastocyst in cattle.

7.
PNAS Nexus ; 2(9): pgad284, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37711857

RESUMO

Pregnancy loss is a significant problem when embryos produced in vitro are transferred to a synchronized uterus. Currently, mechanisms that underlie losses of in vitro-produced embryos during implantation are largely unknown. We investigated this problem using cattle as a model of conceptus attachment by analyzing transcriptome data of paired extraembryonic membrane and endometrial samples collected on gestation days 18 and 25, which spans the attachment window in cattle. We identified that the transfer of an in vitro-produced embryo caused a significant alteration in transcript abundance of hundreds of genes in extraembryonic and endometrial tissues on gestation days 18 and 25, when compared to pregnancies initiated by artificial insemination. Many of the genes with altered transcript abundance are associated with biological processes that are relevant to the establishment of pregnancy. An integrative analysis of transcriptome data from the conceptus and endometrium identified hundreds of putative ligand-receptor pairs. There was a limited variation of ligand-receptor pairs in pregnancies initiated by in vitro-produced embryos on gestation day 18, and no alteration was observed on gestation day 25. In parallel, we identified that in vitro production of embryos caused an extensive alteration in the coexpression of genes expressed in the extraembryonic membranes and the corresponding endometrium on both gestation days. Both the transcriptional dysregulation that exists in the conceptus or endometrium independently and the rewiring of gene transcription between the conceptus and endometrium are a potential component of the mechanisms that contribute to pregnancy losses caused by in vitro production of embryos.

8.
Sci Rep ; 13(1): 12664, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542054

RESUMO

Infertility or subfertility is a critical barrier to sustainable cattle production, including in heifers. The development of heifers that do not produce a calf within an optimum window of time is a critical factor for the profitability and sustainability of the cattle industry. In parallel, heifers are an excellent biomedical model for understanding the underlying etiology of infertility because well-nourished heifers can still be infertile, mostly because of inherent physiological and genetic causes. Using a high-density single nucleotide polymorphism (SNP) chip, we collected genotypic data, which were analyzed using an association analysis in PLINK with Fisher's exact test. We also produced quantitative transcriptome data and proteome data. Transcriptome data were analyzed using the quasi-likelihood test followed by the Wald's test, and the likelihood test and proteome data were analyzed using a generalized mixed model and Student's t-test. We identified two SNPs significantly associated with heifer fertility (rs110918927, chr12: 85648422, P = 6.7 × 10-7; and rs109366560, chr11:37666527, P = 2.6 × 10-5). We identified two genes with differential transcript abundance (eFDR ≤ 0.002) between the two groups (Fertile and Sub-Fertile): Adipocyte Plasma Membrane Associated Protein (APMAP, 1.16 greater abundance in the Fertile group) and Dynein Axonemal Intermediate Chain 7 (DNAI7, 1.23 greater abundance in the Sub-Fertile group). Our analysis revealed that the protein Alpha-ketoglutarate-dependent dioxygenase FTO was more abundant in the plasma collected from Fertile heifers relative to their Sub-Fertile counterparts (FDR < 0.05). Lastly, an integrative analysis of the three datasets identified a series of molecular features (SNPs, gene transcripts, and proteins) that discriminated 21 out of 22 heifers correctly based on their fertility category. Our multi-omics analyses confirm the complex nature of female fertility. Very importantly, our results also highlight differences in the molecular profile of heifers associated with fertility that transcend the constraints of breed-specific genetic background.


Assuntos
Infertilidade , Multiômica , Bovinos , Feminino , Animais , Proteoma , Fertilidade/genética , Genótipo
9.
J Anim Sci Biotechnol ; 14(1): 62, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37143150

RESUMO

BACKGROUND: A gap currently exists between genetic variants and the underlying cell and tissue biology of a trait, and expression quantitative trait loci (eQTL) studies provide important information to help close that gap. However, two concerns that arise with eQTL analyses using RNA-sequencing data are normalization of data across samples and the data not following a normal distribution. Multiple pipelines have been suggested to address this. For instance, the most recent analysis of the human and farm Genotype-Tissue Expression (GTEx) project proposes using trimmed means of M-values (TMM) to normalize the data followed by an inverse normal transformation. RESULTS: In this study, we reasoned that eQTL analysis could be carried out using the same framework used for differential gene expression (DGE), which uses a negative binomial model, a statistical test feasible for count data. Using the GTEx framework, we identified 35 significant eQTLs (P < 5 × 10-8) following the ANOVA model and 39 significant eQTLs (P < 5 × 10-8) following the additive model. Using a differential gene expression framework, we identified 930 and six significant eQTLs (P < 5 × 10-8) following an analytical framework equivalent to the ANOVA and additive model, respectively. When we compared the two approaches, there was no overlap of significant eQTLs between the two frameworks. Because we defined specific contrasts, we identified trans eQTLs that more closely resembled what we expect from genetic variants showing complete dominance between alleles. Yet, these were not identified by the GTEx framework. CONCLUSIONS: Our results show that transforming RNA-sequencing data to fit a normal distribution prior to eQTL analysis is not required when the DGE framework is employed. Our proposed approach detected biologically relevant variants that otherwise would not have been identified due to data transformation to fit a normal distribution.

10.
Anim Reprod Sci ; 248: 107174, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36502760

RESUMO

In vitro production of embryos (IVP) is a valuable technology to produce embryos of high genetic value. Despite advances in IVP, the efficiency of culture systems remains low. One method to increase IVP success is the early selection of oocytes or embryos that may have greater developmental potential. Here, we investigated two methods of selection, namely BCB staining and cleavage kinetics, both individually and in conjunction, for improved developmental outcomes in vitro. We hypothesized that a synergistic use of both BCB staining and cleavage kinetics would result in identification of embryos of greater developmental potential. The selection of oocytes by BCB staining does select for those oocytes with higher developmental potential, as noted by a greater blastocyst development between BCB positive (32.6%) and BCB negative (22.0%) on day 8 post-fertilization. However, the utilization of BCB staining and cleavage kinetics in tandem resulted in a complete masking of the effect observed when using BCB alone. We obtained the highest proportion of blastocyst development per selection group using cleavage kinetics alone, in which 53.1% of embryos grouped as Fast produced a blastocyst, which was significantly different from the three other groups (Fast+, Slow, not cleaved). We observed, however, that the separation of embryos by cleavage kinetics did not predict their survival to cryopreservation. In conclusion, in standard culture systems, cleavage kinetics is an effective method for the selection of embryos with increased developmental potential to develop blastocysts, however, it may not be effective to select healthy embryos for transfer following cryopreservation.


Assuntos
Fertilização in vitro , Oócitos , Animais , Fertilização in vitro/veterinária , Fertilização in vitro/métodos , Oxazinas , Coloração e Rotulagem/veterinária , Blastocisto
11.
Animals (Basel) ; 14(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38200775

RESUMO

This work explored whether supplementing selective members of the interleukin-6 (IL6) cytokine family during in vitro bovine oocyte maturation affects maturation success, cumulus-oocyte complex (COC) gene expression, fertilization success, and embryo development potential. Human recombinant proteins for IL6, IL11, and leukemia inhibitory factor (LIF) were supplemented to COCs during the maturation period, then fertilization and embryo culture commenced without further cytokine supplementation. The first study determined that none of these cytokines influenced the rate that oocytes achieved arrest at meiosis II. The second study identified that LIF and IL11 supplementation increases AREG transcript abundance. Supplementation with IL6 supplementation did not affect AREG abundance but reduced HAS2 transcript abundance. Several other transcriptional markers of oocyte competency were not affected by any of the cytokines. The third study determined that supplementing these cytokines during maturation did not influence fertilization success, but either LIF or IL11 supplementation increased blastocyst development. No effect of IL6 supplementation on subsequent blastocyst development was detected. The fourth experiment explored whether each cytokine treatment affects the post-thaw survivability of cryopreserved IVP blastocysts. None of the cytokines supplemented during oocyte maturation produced any positive effects on post-thaw blastocyst re-expansion and hatching. In conclusion, these outcomes implicate IL11 and LIF as potentially useful supplements for improving bovine oocyte competency.

12.
Reprod Biol Endocrinol ; 20(1): 119, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35964078

RESUMO

BACKGROUND: Cytoplasmic and nuclear maturation of oocytes, as well as interaction with the surrounding cumulus cells, are important features relevant to the acquisition of developmental competence. METHODS: Here, we utilized Brilliant cresyl blue (BCB) to distinguish cattle oocytes with low activity of the enzyme Glucose-6-Phosphate Dehydrogenase, and thus separated fully grown (BCB positive) oocytes from those in the growing phase (BCB negative). We then analyzed the developmental potential of these oocytes, mitochondrial DNA (mtDNA) copy number in single oocytes, and investigated the transcriptome of single oocytes and their surrounding cumulus cells of BCB positive versus BCB negative oocytes. RESULTS: The BCB positive oocytes were twice as likely to produce a blastocyst in vitro compared to BCB- oocytes (P < 0.01). We determined that BCB negative oocytes have 1.3-fold more mtDNA copies than BCB positive oocytes (P = 0.004). There was no differential transcript abundance of genes expressed in oocytes, however, 172 genes were identified in cumulus cells with differential transcript abundance (FDR < 0.05) based on the BCB staining of their oocyte. Co-expression analysis between oocytes and their surrounding cumulus cells revealed a subset of genes whose co-expression in BCB positive oocytes (n = 75) and their surrounding cumulus cells (n = 108) compose a unique profile of the cumulus-oocyte complex. CONCLUSIONS: If oocytes transition from BCB negative to BCB positive, there is a greater likelihood of producing a blastocyst, and a reduction of mtDNA copies, but there is no systematic variation of transcript abundance. Cumulus cells present changes in transcript abundance, which reflects in a dynamic co-expression between the oocyte and cumulus cells.


Assuntos
Células do Cúmulo , Oócitos , Animais , Blastocisto , Bovinos , Citoplasma , DNA Mitocondrial/genética , Feminino
13.
Sci Rep ; 12(1): 8196, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581252

RESUMO

The transcriptome of peripheral white blood cells (PWBCs) are indicators of an organism's physiological state, thus making them a prime biological sample for mRNA-based biomarker discovery. Here, we designed an experiment to evaluate the impact of delayed processing of whole blood samples on gene transcript abundance in PWBCs. We hypothesized that storing blood samples for 24 h at 4 °C would cause RNA degradation resulting in altered transcriptome profiles. There were no statistical differences in RNA quality parameters among samples processed after one, three, six, or eight hours post collection. Additionally, no significant differences were noted in RNA quality parameters or gene transcript abundance between samples collected from the jugular and coccygeal veins. However, samples processed after 24 h of storage had a lower RNA integrity number value (P = 0.03) in comparison to those processed after one hour of storage. Using RNA-sequencing, we identified four and 515 genes with differential transcript abundance in samples processed after storage for eight and 24 h, respectively, relative to samples processed after one hour. Sequencing coverage of transcripts was similar between samples from the 24-h and one-hour groups, thus showing no indication of RNA degradation. This alteration in transcriptome profiles can impair the accuracy of mRNA-based biomarkers, therefore, blood samples collected for mRNA-based biomarker discovery should be refrigerated immediately and processed within six hours post-sampling.


Assuntos
RNA , Transcriptoma , Biomarcadores , RNA Mensageiro/genética , Análise de Sequência de RNA
14.
STAR Protoc ; 2(4): 100895, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34723212

RESUMO

Studying individual mammalian oocytes has been extremely valuable for the understanding of the molecular composition of oocytes including RNA storage. Here, a detailed protocol for isolation of oocytes, extraction of total RNA from single oocytes followed by full-length cDNA amplification, and library preparation is presented. The procedure permits the production of cost-effective and high-quality sequencing libraries. This protocol can be adapted for transcriptome analysis of oocytes from other species and be used to generate high-quality data from single embryos. For complete details on the use and execution of this protocol, please refer to Biase and Kimble (2018).


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Oócitos/metabolismo , RNA/genética , Análise de Sequência de RNA/métodos , Animais , Bovinos , DNA Complementar/genética , DNA Complementar/metabolismo , Feminino , RNA/metabolismo , Transcriptoma/genética
15.
Sci Rep ; 10(1): 16786, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033295

RESUMO

Infertility is a challenging phenomenon in cattle that reduces the sustainability of beef production worldwide. Here, we tested the hypothesis that gene expression profiles of protein-coding genes expressed in peripheral white blood cells (PWBCs), and circulating micro RNAs in plasma, are associated with female fertility, measured by pregnancy outcome. We drew blood samples from 17 heifers on the day of artificial insemination and analyzed transcript abundance for 10,496 genes in PWBCs and 290 circulating micro RNAs. The females were later classified as pregnant to artificial insemination, pregnant to natural breeding or not pregnant. We identified 1860 genes producing significant differential coexpression (eFDR < 0.002) based on pregnancy outcome. Additionally, 237 micro RNAs and 2274 genes in PWBCs presented differential coexpression based on pregnancy outcome. Furthermore, using a machine learning prediction algorithm we detected a subset of genes whose abundance could be used for blind categorization of pregnancy outcome. Our results provide strong evidence that transcript abundance in circulating white blood cells is associated with fertility in heifers.


Assuntos
Expressão Gênica , Leucócitos/metabolismo , Resultado da Gravidez/veterinária , Animais , Bovinos , Feminino , Inseminação Artificial/veterinária , Gravidez , Transcriptoma
16.
J Anim Sci Biotechnol ; 11: 97, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33014361

RESUMO

The development of replacement heifers is at the core of cow-calf beef production systems. In 2020, the USDA, National Agricultural Statistics Service reported 5.771 million beef heifers, 500 pounds and over, are under development for cow replacement. A compilation of data from several studies indicate that between 85% and 95% of these heifers will become pregnant in their first breeding season. Several thousands of heifers being raised for replacement may not deliver a calf on their first breeding season and result in economic losses to cow-calf producers. Many management procedures have been developed to maximize the reproductive potential of beef heifers. Such approaches include, but are not limited to the following: nutritional management for controlled weight gain, identification of reproductive maturity by physiological and morphological indicators, and the implementation of an estrous synchronization program. The implementation of management strategies has important positive impact(s) on the reproductive efficiency of heifers. There are limitations, however, because some heifers deemed ready to enter their first breeding season do not become pregnant. In parallel, genetic selection for fertility-related traits in beef heifers have not promoted major genetic gains on this particular area, most likely due to low heritability of female fertility traits in cattle. Technologies such as antral follicle counting, DNA genotyping and RNA profiling are being investigated as a means to aid in the identification of heifers of low fertility potential. To date, many polymorphisms have been associated with heifer fertility, but no DNA markers have been identified across herds. Antral follicle count is an indication of the ovarian reserve and is an indicator of the reproductive health of a heifer. We have been working on the identification of transcriptome profiles in heifers associated with pregnancy outcome. Our current investigations integrating protein-coding transcript abundance and artificial intelligence have identified the potential for bloodborne transcript abundance to be used as indicators of fertility potential in beef heifers. In summary, there is an ongoing pressure for reducing costs and increasing efficiency in cow-calf production systems, and new technologies can help reduce the long-standing limitations in beef heifer fertility.

17.
Biol Reprod ; 102(4): 784-794, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31982908

RESUMO

From the time oocytes leave quiescence, there are constant microenvironmental influences contributing to development, thus acquiring developmental competence is not a simple, linear phenomenon. During folliculogenesis, oocytes experience many morphological and cytological changes that contribute toward the acquisition of developmental competence, a process defined by an oocyte's ability to progress through folliculogenesis, be fertilized, undergo cleavage, and develop into an embryo. Many factors, such as ovarian follicle size, cow age, and the morphology of the cumulus-oocyte complex, have been extensively investigated to understand this process. In parallel to aiding in the understanding of oocyte biology, these features have been used to characterize an oocyte's ability to achieve competence. In addition, oocytes undergo intense gene transcription and protein translation to accumulate the maternal stores. When the oocyte is fully grown, most genes are transcriptionally inactive, and the chromatin is densely compacted. More recently, RNA profiling has been used to further define the transcriptional parameters that are associated with oocyte development. Here, focusing on cattle, we provide an overview of the experimental models commonly used to understand the underlying biology related to oocyte developmental competence. We compiled public data and showed that cattle oocytes can express over 15 000 protein-coding genes, suggesting a complex transcriptome landscape. Surprisingly, less than 2% of the expressed genes have been linked to developmental competence. The identification of the gene products that contribute to oocyte development, and understanding their biological function, are a vital component of our quest toward defining oocyte developmental competence at the molecular level.


Assuntos
Oócitos/metabolismo , Oogênese/fisiologia , Folículo Ovariano/metabolismo , RNA/metabolismo , Animais , Bovinos , Células do Cúmulo/metabolismo , Feminino
18.
PLoS Biol ; 17(4): e3000046, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30978203

RESUMO

Interactions between embryo and endometrium at implantation are critical for the progression of pregnancy. These reciprocal actions involve exchange of paracrine signals that govern implantation and placentation. However, it remains unknown how these interactions between the conceptus and the endometrium are coordinated at the level of an individual pregnancy. Under the hypothesis that gene expression in endometrium is dependent on gene expression of extraembryonic tissues and genes expressed in extraembryonic tissues are dependent of genes expressed in the endometrium, we performed an integrative analysis of transcriptome profiles of paired extraembryonic tissue and endometria obtained from cattle (Bos taurus) pregnancies initiated by artificial insemination. We quantified strong dependence (|r| > 0.95, empirical false discovery rate [eFDR] < 0.01) in transcript abundance of genes expressed in the extraembryonic tissues and genes expressed in the endometrium. The profiles of connectivity revealed distinct coexpression patterns of extraembryonic tissues with caruncular and intercaruncular areas of the endometrium. Notably, a subset of highly coexpressed genes between extraembryonic tissue (n = 229) and caruncular areas of the endometrium (n = 218, r > 0.9999, eFDR < 0.001) revealed a blueprint of gene expression specific to each pregnancy. Gene ontology analyses of genes coexpressed between extraembryonic tissue and endometrium revealed significantly enriched modules with critical contribution for implantation and placentation, including "in utero embryonic development," "placenta development," and "regulation of transcription." Coexpressing modules were remarkably specific to caruncular or intercaruncular areas of the endometrium. The quantitative association between genes expressed in extraembryonic tissue and endometrium emphasize a coordinated communication between these two entities in mammals. We provide evidence that implantation in mammalian pregnancy relies on the ability of the extraembryonic tissue and the endometrium to develop a fine-tuned adaptive response characteristic of each pregnancy.


Assuntos
Bovinos/embriologia , Implantação do Embrião/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Animais , Bovinos/metabolismo , Embrião de Mamíferos , Desenvolvimento Embrionário , Endométrio/fisiologia , Feminino , Fertilização in vitro/métodos , Fertilização in vitro/veterinária , Perfilação da Expressão Gênica/métodos , Gravidez , Transcriptoma
19.
J Anim Sci Biotechnol ; 10: 18, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30891236

RESUMO

BACKGROUND: Artificial insemination is a preferred breeding method for beef heifers as it advances the genetic background, produces a predictive and profitable calving season, and extends the heifer's reproductive life span. As reproductive efficiency in heifers is key for the success of beef cattle production systems, following artificial insemination, heifers are exposed to a bull for the remainder of the breeding season. Altogether, up to 95% of heifers might become pregnant in their first breeding season. Heifers that do not become pregnant at the end of the breeding season represent an irreparable economical loss. Additionally, heifers conceiving late in the breeding season to natural service, although acceptable, poses serious losses to producers. To minimize losses due to reproductive failure, different phenotypic parameters can be assessed and utilized as selection tools. Here, we tested the hypothesis that in a group of pre-selected heifers, records of weaning weight, age at weaning, age at artificial insemination, and age of dam differ among heifers of varied reproductive outcomes during the first breeding season. RESULTS: None of the parameters tested presented predictive ability to discriminate the heifers based on the response variable ('pregnant to artificial insemination', 'pregnant to natural service', 'not pregnant'). Heifers categorized with body condition score = 6 and reproductive tract score ≥ 4 had the greatest proportion of pregnancy to artificial insemination (49% and 44%, respectively). Furthermore, it was notable that heifers presenting body condition score = 6 and reproductive tract score = 5 presented the greatest pregnancy rate at end of the breeding season (89%). Heifers younger than 368 d at the start of the breeding season did not become pregnant to artificial insemination. Those young heifers had 12.5% chance to become pregnant in their first breeding season, compared to 87.5% if the heifers were older than 368 days. CONCLUSION: Our results suggest that beef heifers with body condition score = 6 and reproductive tract score ≥ 4 are more likely to become pregnant to artificial insemination. Careful assessment should be undertaken when developing replacement heifers that will not reach 12 months of age by the beginning of the breeding season.

20.
iScience ; 7: 16-29, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30267678

RESUMO

We developed the Rainbow-seq technology to trace cell division history and reveal single-cell transcriptomes. With distinct fluorescent protein genes as lineage markers, Rainbow-seq enables each single-cell RNA sequencing (RNA-seq) experiment to simultaneously decode the lineage marker genes and read single-cell transcriptomes. We triggered lineage tracking in each blastomere at the 2-cell stage, observed microscopically inequivalent contributions of the progeny to the two embryonic poles at the blastocyst stage, and analyzed every single cell at either 4- or 8-cell stage with deep paired-end sequencing of full-length transcripts. Although lineage difference was not marked unequivocally at a single-gene level, it became clear when the transcriptome was analyzed as a whole. Moreover, several groups of novel transcript isoforms with embedded repeat sequences exhibited lineage difference, suggesting a possible link between DNA demethylation and cell fate decision. Rainbow-seq bridged a critical gap between division history and single-cell RNA-seq assays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...