Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Neural Inf Process Syst ; 34: 19261-19273, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36590675

RESUMO

Empirical risk minimization (ERM) is the workhorse of machine learning, whether for classification and regression or for off-policy policy learning, but its model-agnostic guarantees can fail when we use adaptively collected data, such as the result of running a contextual bandit algorithm. We study a generic importance sampling weighted ERM algorithm for using adaptively collected data to minimize the average of a loss function over a hypothesis class and provide first-of-their-kind generalization guarantees and fast convergence rates. Our results are based on a new maximal inequality that carefully leverages the importance sampling structure to obtain rates with the good dependence on the exploration rate in the data. For regression, we provide fast rates that leverage the strong convexity of squared-error loss. For policy learning, we provide regret guarantees that close an open gap in the existing literature whenever exploration decays to zero, as is the case for bandit-collected data. An empirical investigation validates our theory.

2.
Adv Neural Inf Process Syst ; 34: 28548-28559, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35785105

RESUMO

Contextual bandit algorithms are increasingly replacing non-adaptive A/B tests in e-commerce, healthcare, and policymaking because they can both improve outcomes for study participants and increase the chance of identifying good or even best policies. To support credible inference on novel interventions at the end of the study, nonetheless, we still want to construct valid confidence intervals on average treatment effects, subgroup effects, or value of new policies. The adaptive nature of the data collected by contextual bandit algorithms, however, makes this difficult: standard estimators are no longer asymptotically normally distributed and classic confidence intervals fail to provide correct coverage. While this has been addressed in non-contextual settings by using stabilized estimators, the contextual setting poses unique challenges that we tackle for the first time in this paper. We propose the Contextual Adaptive Doubly Robust (CADR) estimator, the first estimator for policy value that is asymptotically normal under contextual adaptive data collection. The main technical challenge in constructing CADR is designing adaptive and consistent conditional standard deviation estimators for stabilization. Extensive numerical experiments using 57 OpenML datasets demonstrate that confidence intervals based on CADR uniquely provide correct coverage.

3.
Sci Rep ; 10(1): 10939, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616757

RESUMO

The identification of disease hotspots is an increasingly important public health problem. While geospatial modeling offers an opportunity to predict the locations of hotspots using suitable environmental and climatological data, little attention has been paid to optimizing the design of surveys used to inform such models. Here we introduce an adaptive sampling scheme optimized to identify hotspot locations where prevalence exceeds a relevant threshold. Our approach incorporates ideas from Bayesian optimization theory to adaptively select sample batches. We present an experimental simulation study based on survey data of schistosomiasis and lymphatic filariasis across four countries. Results across all scenarios explored show that adaptive sampling produces superior results and suggest that similar performance to random sampling can be achieved with a fraction of the sample size.

4.
J Appl Stat ; 45(15): 2800-2818, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31631918

RESUMO

Artificial neural networks have been successfully applied to a variety of machine learning tasks, including image recognition, semantic segmentation, and machine translation. However, few studies fully investigated ensembles of artificial neural networks. In this work, we investigated multiple widely used ensemble methods, including unweighted averaging, majority voting, the Bayes Optimal Classifier, and the (discrete) Super Learner, for image recognition tasks, with deep neural networks as candidate algorithms. We designed several experiments, with the candidate algorithms being the same network structure with different model checkpoints within a single training process, networks with same structure but trained multiple times stochastically, and networks with different structure. In addition, we further studied the over-confidence phenomenon of the neural networks, as well as its impact on the ensemble methods. Across all of our experiments, the Super Learner achieved best performance among all the ensemble methods in this study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA