Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 999, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32081896

RESUMO

Decay of bound states due to coupling with free particle states is a general phenomenon occurring at energy scales from MeV in nuclear physics to peV in ultracold atomic gases. Such a coupling gives rise to Fano-Feshbach resonances (FFR) that have become key to understanding and controlling interactions-in ultracold atomic gases, but also between quasiparticles, such as microcavity polaritons. Their energy positions were shown to follow quantum chaotic statistics. In contrast, their lifetimes have so far escaped a similarly comprehensive understanding. Here, we show that bound states, despite being resonantly coupled to a scattering state, become protected from decay whenever the relative phase is a multiple of π. We observe this phenomenon by measuring lifetimes spanning four orders of magnitude for FFR of spin-orbit excited molecular ions with merged beam and electrostatic trap experiments. Our results provide a blueprint for identifying naturally long-lived states in a decaying quantum system.

2.
Phys Rev Lett ; 119(7): 073204, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28949664

RESUMO

We demonstrate simultaneous deceleration and trapping of a cold atomic and molecular mixture. This is the first step towards studies of cold atom-molecule collisions at low temperatures as well as application of sympathetic cooling. Both atoms and molecules are cooled in a supersonic expansion and are loaded into a moving magnetic trap that brings them to rest via the Zeeman interaction from an initial velocity of 375 m/s. We use a beam seeded with molecular oxygen, and entrain it with lithium atoms by laser ablation prior to deceleration. The deceleration ends with loading of the mixture into a static quadrupole trap, which is generated by two permanent magnets. We estimate 10^{9} trapped O_{2} molecules and 10^{5} Li atoms with background pressure limited lifetime on the order of 1 sec. With further improvements to lithium entrainment we expect that sympathetic cooling of molecules is within reach.

3.
Sci Adv ; 3(3): e1602258, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28345047

RESUMO

Supersonic beams are a prevalent source of cold molecules used in the study of chemical reactions, atom interferometry, gas-surface interactions, precision spectroscopy, molecular cooling, and more. The triumph of this method emanates from the high densities produced in relation to other methods; however, beam density remains fundamentally limited by interference with shock waves reflected from collimating surfaces. We show experimentally that this shock interaction can be reduced or even eliminated by cryocooling the interacting surface. An increase of nearly an order of magnitude in beam density was measured at the lowest surface temperature, with no further fundamental limitation reached. Visualization of the shock waves by plasma discharge and reproduction with direct simulation Monte Carlo calculations both indicate that the suppression of the shock structure is partially caused by lowering the momentum flux of reflected particles and significantly enhanced by the adsorption of particles to the surface. We observe that the scaling of beam density with source pressure is recovered, paving the way to order-of-magnitude brighter, cold molecular beams.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...