Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Atmos Sol Terr Phys ; 186: 35-46, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-33911973

RESUMO

Glacier melting due to light-absorbing aerosol has become a growing issue in recent decades. The emphasis of this study is to examine aerosol loadings over the high mountain glacier region of northern Pakistan between 2004 and 2016, with sources including local emissions and long-range transported pollution. Optical properties of aerosols were seasonally analyzed over the glacier region (35-36.5°N; 74.5-77.5°E) along with three selected sites (Gilgit, Skardu, and Diamar) based on the Ozone Monitoring Instrument (OMI). The aerosol sub-type profile was analyzed with Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to understand the origin of air masses arriving in the study region. The highest values of aerosol optical depth (AOD) and single scattering albedo (SSA) occurred during spring, whereas aerosol index (AI) and absorption AOD (AAOD) exhibited maximum values in winter and summer, respectively. The minimum values of AOD, AI, AAOD, and SSA occurred in winter, autumn, winter, and autumn, respectively. The results revealed that in spring and summer the prominent aerosols were dust, whereas, in autumn and winter, anthropogenic aerosols were prominent. Trend analysis showed that AI, AOD, and AAOD increased at the rate of 0.005, 0.006, and 0.0001 yr-1, respectively, while SSA decreased at the rate of 0.0002 yr-1. This is suggestive of the enhancement in aerosol types over the region with time that accelerates melting of ice. CALIPSO data indicate that the regional aerosol was mostly comprised of sub-types categorized as dust, polluted dust, smoke, and clean continental. The types of aerosols defined by OMI were in good agreement with CALIPSO retrievals. Analysis of the National Oceanic and Atmospheric Administration Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model revealed that air parcels arriving at the glacier region stemmed from different source sites.

2.
Appl Opt ; 57(11): 2881-2889, 2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29714289

RESUMO

Discrimination of aerosol types is very important, because different aerosols are created from diverse sources having different chemical, physical, and optical properties. In the present study, we have analyzed the seasonal classification of aerosol types by multiple clustering techniques, using AERosol Robotic NETwork (AERONET) data during 2010-2013 over Zanjan, Iran. We found that aerosol optical depth (AOD) showed pronounced seasonal variations of a summer high and winter low. Conversely, the values of the Angstrom exponent (AE) in winter and fall were higher than in spring and summer, which confirmed the presence of fine particles, while the low value of AE in the summer and spring represented the existence of coarse particles. Single Scattering Albedo (SSA) variations revealed the presence of scattering aerosols like dust in spring, summer, and fall while the dominance of absorbing-type aerosols in winter were also observed. The influence of local anthropogenic activities has caused a higher concentration of fine aerosols, and a higher fine mode fraction (FMF) of AOD in winter was recorded. Classification of aerosol types was carried out by analyzing different aerosol properties such as AOD versus AE, extinction Angstrom exponent (EAE) versus SSA, EAE versus absorption Angstrom exponent (AAE), FMF AOD versus EAE, and SSA versus FMF AOD. The analysis revealed the presence of dust and polluted dust in spring, summer, and fall in the atmosphere of Zanjan. Urban/industrial aerosols were available in all seasons, especially in fall and winter. The mixed aerosols existed in all seasons over the study location; however, no biomass burning aerosols were found. The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) aerosol subtype profiles showed the dominance of dust and polluted dust in spring and summer. However, the presence of polluted dust and industrial smoke during fall and winter were also noted over the study site.

3.
Appl Opt ; 56(23): 6548, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29047944

RESUMO

The authors regret the incomplete acknowledgment in Appl. Opt.55, 6199 (2016)APOPAI0003-693510.1364/AO.55.006199.

4.
Sci Total Environ ; 603-604: 319-329, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28646774

RESUMO

With observations of black carbon (BC) aerosol concentrations, optical and radiative properties were obtained over the urban city of Karachi during the period of March 2006-December 2008. BC concentrations were continuously measured using an Aethalometer, while optical and radiative properties were estimated through the Optical Properties of Aerosols and Clouds (OPAC) and Santa Barbra DISORT Atmospheric Radiative Transfer (SBDART) models, respectively. For the study period, the measured BC concentrations were higher during January, February and November, while lower during May, June, July and August. A maximum peak value was observed during January 2007 while the minimum value was observed during June 2006. The Short Wave (SW) BC Aerosol Radiative Forcing (ARF) both at Top of the Atmosphere (ToA) and within ATMOSphere (ATMOS) were positive during all the months, whereas negative SW BC ARF was found at the SurFaCe (SFC). Overall, SW BC ARF was higher during January, February and November, while relatively lower ARF was found during May, June, July and August. Conversely, the Long Wave (LW) BC ARF at ToA and SFC remained positive, whereas within ATMOS it shifted towards positive values (heating effect) during June-August. Finally, the net (SW+LW) BC ARF were found to be positive at ToA and in ATMOS, while negative at SFC. Moreover, a systematic increase in Atmospheric Heating Rate (AHR) was found during October to January. Additionally, we found highest correlation between Absorption Aerosol Optical Depth (AODabs) and SW BC ARF within ATMOS followed by SFC and ToA. Overall, the contribution of BC to the total ARF was found to greater than 84% for the whole observational period while contributing up to 93% during January 2007.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Fuligem/análise , Aerossóis/análise , Cidades , Paquistão , Estações do Ano
5.
Appl Opt ; 55(23): 6199-211, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27534460

RESUMO

The emphasis of the present work lies on the examination of the distribution and spectral behavior of the optical properties of atmospheric aerosols in the Indo-Gangetic plains (IGP). Measurements were performed using an AErosol RObotic NETwork (AERONET) Sun photometer at four sites (Karachi, Lahore, Jaipur, and Kanpur) with different aerosol environments during the period 2007-2013. The aerosol optical depth (AOD) and Ångström exponent (α) were measured, and the results revealed a high AOD with a low α value over Karachi and Jaipur in July, while a high AOD with a high α value was reported over Lahore and Kanpur during October and December. The pattern of the aerosol volume size distribution (VSD) was similar across all four sites, with a prominent peak in coarse mode at a radius of 4.0-5.0 µm, and in fine mode at a radius of 0.1-4.0 µm, for all seasons. On the other hand, during the winter months, the fine-mode peaks were comparable to the coarse mode, which was not the case during the other seasons. The single scattering albedo (SSA) was found to be strongly wavelength-dependent during all seasons and for all sites, with the exception of Kanpur, where the SSA decreases with increasing wavelength during winter and post-monsoon. It was found that the phase function of the atmospheric aerosol was high at a small angle and stable around a scattering angle of 90°-180° at all sites and during all seasons. Spectral variation of the asymmetry parameter (ASY) revealed a decreasing trend with increasing wavelength, and this decreasing trend was more pronounced during the summer, winter, and post-monsoon as compared to pre-monsoon. Furthermore, extensive measurements suggest that both real (RRI) and imaginary (IRI) parts of the refractive index (RI) show contrasting spectral behavior during all seasons. Finally, the analysis of the National Oceanic and Atmospheric Administration hybrid single particle Lagrangian integrated trajectory model back trajectory revealed that the seasonal variation in aerosol types was influenced by a contribution of air masses from multiple source locations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...