Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 12: 1380266, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576849

RESUMO

Introduction: Cancer is the second most prevalent cause of mortality in the world, despite the availability of several medications for cancer treatment. Therefore, the cancer research community emphasized on computational techniques to speed up the discovery of novel anticancer drugs. Methods: In the current study, QSAR-based virtual screening was performed on the Zinc15 compound library (271 derivatives of methotrexate (MTX) and phototrexate (PTX)) to predict their inhibitory activity against dihydrofolate reductase (DHFR), a potential anticancer drug target. The deep learning-based ADMET parameters were employed to generate a 2D QSAR model using the multiple linear regression (MPL) methods with Leave-one-out cross-validated (LOO-CV) Q2 and correlation coefficient R2 values as high as 0.77 and 0.81, respectively. Results: From the QSAR model and virtual screening analysis, the top hits (09, 27, 41, 68, 74, 85, 99, 180) exhibited pIC50 ranging from 5.85 to 7.20 with a minimum binding score of -11.6 to -11.0 kcal/mol and were subjected to further investigation. The ADMET attributes using the message-passing neural network (MPNN) model demonstrated the potential of selected hits as an oral medication based on lipophilic profile Log P (0.19-2.69) and bioavailability (76.30% to 78.46%). The clinical toxicity score was 31.24% to 35.30%, with the least toxicity score (8.30%) observed with compound 180. The DFT calculations were carried out to determine the stability, physicochemical parameters and chemical reactivity of selected compounds. The docking results were further validated by 100 ns molecular dynamic simulation analysis. Conclusion: The promising lead compounds found endorsed compared to standard reference drugs MTX and PTX that are best for anticancer activity and can lead to novel therapies after experimental validations. Furthermore, it is suggested to unveil the inhibitory potential of identified hits via in-vitro and in-vivo approaches.

2.
Chem Biodivers ; 20(12): e202301268, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37843082

RESUMO

Interstitial Cystitis (IC) is a chronic inflammatory disease that lacks effective treatment. The present study aimed to investigate the potential of aqueous ethanol extract of Cuminum cyminum (AEECC) on oxidative stress, inflammation and overactivity of urinary bladder induced by cyclophosphamide (CYP). Female Sprague-Dawley rats received intraperitoneal administration of cyclophosphamide (150 mg/kg, i. p. 1st , 4th , and 7th days). To investigate the urothelial damage, the bladder weight, nociception behavior, and Evans blue dye extravasation method was used. The antioxidants CAT, GPX and NO were measured. ELISA determined the IL-6 and TNF-α levels. The spasmolytic effect of AEECC was investigated on isolated bladder strips and its mechanisms were determined. The enhanced nociception behavior, bladder weight, vascular permeability, edema, hemorrhage, nitric oxide, IL-6 and TNF-α levels by CYP administration were significantly reduced by AEECC (250 and 500 mg/kg). A significant increase in serum antioxidant system such as CAT and GPx was also observed in AEECC-treated rats. The AEECC (3 mg/ml) significantly reduced urinary bladder tone in the strips pre-contracted with carbachol in both control and CYP-treated rats. This relaxation was demolished by atropine, nifedipine, glibenclamide, and indomethacin but not with propranolol. The plant extract showed the presence of antioxidant and anti-inflammatory phytochemicals. These results suggest that Cuminum cyminum offers uroprotective activity and can ameliorate CYP-induced bladder toxicity by modulating antioxidant parameters, pro-inflammatory cytokine levels and bladder smooth muscle overactivity. The in silico binding interactions of antioxidant 2I3Y and anti-inflammatory protein 1TNF with various ligands from Cuminum cyminum seeds revealed potential bioactive compounds with promising antioxidant and anti-inflammatory properties, providing valuable insights for drug development and nutraceutical research.


Assuntos
Cuminum , Cistite , Ratos , Animais , Bexiga Urinária , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Cistite/induzido quimicamente , Cistite/tratamento farmacológico , Citocinas , Fator de Necrose Tumoral alfa , Interleucina-6 , Ratos Sprague-Dawley , Ciclofosfamida/toxicidade , Anti-Inflamatórios/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...