Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2210807, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37001970

RESUMO

Raman spectroscopy is an analytical method based on light-matter interactions that can interrogate the vibrational modes of matter and provide representative molecular fingerprints. Mediated by its label-free, non-invasive nature, and high molecular specificity, Raman-based techniques have become ubiquitous tools for in situ characterization of materials. This review comprehensively describes the theoretical and practical background of Raman spectroscopy and its advanced variants. The numerous facets of material characterization that Raman scattering can reveal, including biomolecular identification, solid-to-solid phase transitions, and spatial mapping of biomolecular species in bioactive materials, are highlighted. The review illustrates the potential of these techniques in the context of active biomedical material design and development by highlighting representative studies from the literature. These studies cover the use of Raman spectroscopy for the characterization of both natural and synthetic biomaterials, including engineered tissue constructs, biopolymer systems, ceramics, and nanoparticle formulations, among others. To increase the accessibility and adoption of these techniques, the present review also provides the reader with practical recommendations on the integration of Raman techniques into the experimental laboratory toolbox. Finally, perspectives on how recent developments in plasmon- and coherently-enhanced Raman spectroscopy can propel Raman from underutilized to critical for biomaterial development are provided.

2.
Anal Chem ; 93(15): 6013-6018, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33821623

RESUMO

A multispectral fiber optic probe has been developed that enables simultaneous analysis of various liquid and solid samples using attenuated total reflection mid-infrared spectroscopy and fluorimetry. The probe design was optimized using ray-tracing simulation of the light propagation. Technical evaluation of the probe has confirmed its output signal quality that was comparable to that of respective probes for single methods. The capability of the probe to deliver complementary chemical information from the same measurement point has been illustrated using model samples of biological tissue. Qualitative analysis of the biological tissue is one of the most important applications of the developed multispectral probe.

3.
Diagnostics (Basel) ; 11(1)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418891

RESUMO

The work is devoted to the development of a scientific and technical basis for instrument implementation of a digital diaphanoscopy technology for the diagnosis of maxillary sinus inflammatory diseases taking into account the anatomical features of patients (differences in skin structure, skull bone thickness, and sinus size), the optical properties of exercised tissues, and the age and gender characteristics of patients. The technology is based on visualization and analysis of scattering patterns of low-intensity radiation as it passes through the maxillary sinuses. The article presents the experimental data obtained using the digital diaphanoscopy method and the results of numerical simulation of the optical radiation passage through the study area. The experimental setup has been modernized through the installation of a a device for controlling the LED applicator brightness. The approach proposed may have considerable promise for creating diagnostic criteria for various pathological changes and can be used to assess the differences in the optical and anatomical features of males and females.

4.
Sensors (Basel) ; 20(22)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238646

RESUMO

Cancers of the abdominal cavity comprise one of the most prevalent forms of cancers, with the highest contribution from colon and rectal cancers (12% of the human population), followed by stomach cancers (4%). Surgery, as the preferred choice of treatment, includes the selection of adequate resection margins to avoid local recurrences due to minimal residual disease. The presence of functionally vital structures can complicate the choice of resection margins. Spectral analysis of tissue samples in combination with chemometric models constitutes a promising approach for more efficient and precise tumour margin identification. Additionally, this technique provides a real-time tumour identification approach not only for intraoperative application but also during endoscopic diagnosis of tumours in hollow organs. The combination of near-infrared and mid-infrared spectroscopy has advantages compared to individual methods for the clinical implementation of this technique as a diagnostic tool.


Assuntos
Neoplasias Colorretais/diagnóstico por imagem , Espectrofotometria Infravermelho , Neoplasias Gástricas/diagnóstico por imagem , Humanos
5.
Opt Express ; 28(19): 27940-27950, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32988076

RESUMO

Limited operating bandwidth originated from strong absorption of glass materials in the infrared (IR) spectral region has hindered the potential applications of microstructured optical waveguide (MOW)-based sensors. Here, we demonstrate multimode waveguide regime up to 6.5 µm for the hollow-core (HC) MOWs drawn from borosilicate soft glass. Effective light guidance in central HC (diameter ∼240 µm) was observed from 0.4 to 6.5 µm despite high waveguide losses (0.4 and 1 dB/cm in near- and mid-IR, respectively). Additional optimization of the waveguide structure can potentially extend its operating range and decrease transmission losses, offering an attractive alternative to tellurite and chalcogenide-based fibers. Featuring the transparency in mid-IR, HC MOWs are promising candidates for the creation of MOW-based sensors for chemical and biomedical applications.

6.
J Mater Chem B ; 8(8): 1629-1639, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32011615

RESUMO

Optical detection techniques based on surface enhanced Raman spectroscopy (SERS) are a powerful tool for biosensing applications. Meanwhile, due to technological advances, different approaches have been investigated to integrate SERS substrates on the tip of optical fibres for molecular probing in liquids. To further demonstrate the perspectives offered by SERS-on-fiber technology for diagnostic purposes, in this study, novel cap-shaped SERS sensors for reversible coupling with customized multimodal probes were prototyped via low-cost polymer casting of polydimethylsiloxane (PDMS) and further assembly of gold nanoparticles (Au NPs) of varied sizes and shapes. To demonstrate the feasibility of liquid sensing with cap sensors using backside illumination and detection, the spectra of rhodamine were acquired by coupling the caps with the fiber. As expected by UV-vis, the highest SERS efficiency was observed for NP-decorated substrates with plasmonic properties in resonance with the irradiation wavelength. Then, SERS biosensors for the specific detection of amyloid-ß (Aß) neurotoxic biomarkers were realized by covalent grafting of Aß antibodies. As attested by fluorescence images and SERS measurements, the biosensors successfully exhibited enhanced Aß affinity compared to the bare sensors without ligands. Finally, these versatile (bio)sensors are a powerful tool to transform any milli-sized fibers into functional (bio)sensing platforms with plasmonic and biochemical properties tailored for specific applications.


Assuntos
Peptídeos beta-Amiloides/análise , Técnicas Biossensoriais/métodos , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/imunologia , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Biomarcadores/análise , Dimetilpolisiloxanos/química , Ouro/química , Humanos , Nanopartículas Metálicas/química , Nanoestruturas/química , Fibras Ópticas , Rodaminas/química , Análise Espectral Raman
7.
Opt Express ; 27(16): 23059-23066, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31510588

RESUMO

Laser light sources are routinely applied building blocks in optical sensor technologies. While lasers are emitting at a precisely defined wavelength within narrow emission bands, chem/bio-sensing applications frequently demand multi-wavelength illumination for addressing a series of species. Instead of using broadband radiation sources, it is a viable strategy to efficiently combine the beams emitted from different lasers to maintain the spectral brightness and yet cover extended wavelength regimes. In this study, substrate-integrated hollow waveguides (iHWGs) are reported as a versatile and efficient alternative compared to conventional beam combining concepts, especially for applications in the mid-infrared spectral regime leading to a highly efficient multi-port beam combiner-the iBEAM.

8.
J Surg Res ; 242: 349-356, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31132626

RESUMO

BACKGROUND: Colorectal cancer is one of the most common malignancies worldwide. There is an urgent need for simple and fast methods to improve tumor detection in the diagnostic and intraoperative setting to avoid complications and provide objective information in distinguishing malignant and benign colorectal tissue. Optical spectroscopy methods have recently shown a great potential for this discrimination in different organs. MATERIALS AND METHODS: In this pilot study, fluorescence emission spectra (excitation: 473 nm) and diffuse reflectance spectra (DRS) of normal and tumor tissues from resected colorectal cancer specimen were measured using fiber optical probes in an ex vivo setting, and the data were subjected to multivariate analysis. RESULTS: Substantial spectral differences were found in the fluorescence and DRS spectra of colorectal cancer tissue in comparison to benign tissue. The diagnostic potential of a multimode optical system combining both spectroscopic methods was investigated by mathematical combination. Compared with the individual techniques, a higher sensitivity of the joint DRS-fluorescence optical system in the discrimination between malignant and benign colorectal tissue could be observed. CONCLUSIONS: In the pilot study presented herein, a quick and reliable method to differentiate malignant and benign colorectal tissue ex vivo with different spectroscopic techniques using spectral fiber probes could be established. Joint fluorescence and near-infrared spectroscopy had a higher sensitivity in tissue discrimination and showed to be a promising combination of two spectroscopic methods. Further studies using the synergic effect of fluorescence and DRS spectroscopy are needed to transfer these findings into the in vivo situation.


Assuntos
Colo/diagnóstico por imagem , Neoplasias Colorretais/diagnóstico , Imagem Multimodal/métodos , Reto/diagnóstico por imagem , Idoso , Colectomia , Colo/patologia , Colo/cirurgia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/cirurgia , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Valor Preditivo dos Testes , Protectomia , Estudos Prospectivos , Reto/patologia , Reto/cirurgia , Sensibilidade e Especificidade , Espectrometria de Fluorescência/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos
9.
Artigo em Inglês | MEDLINE | ID: mdl-30677734

RESUMO

This report describes a full-scale experiment on intradermal Ehrlich carcinoma (EC) differentiation in mouse model using NIR spectroscopy in diffuse reflectance mode and chemometric data processing. EC is widely used as an experimental tumor model due to its resemblance with human undifferentiated epithelial tumors and can be applied as a preclinical testing in order to verify the capability of NIR spectroscopy to distinguish cancer from healthy tissues before a clinical research with an aim of creating a new analytical tool for on-line intraoperative tumor margins assessment. The study consists of five steps of NIR spectra measurements: in vivo on the early stage of carcinoma growth; in vivo on the advanced stage of carcinoma growth; in vivo during the surgery; in vitro study of the post-operative materials stored in formalin; in vitro study of the post-operative materials stored in paraffin. It was shown that reliable tumor differentiation with a compact optic fiber probe was possible in all these cases. The classification models were built on two data sets, obtained during in vivo and in vitro measurements; both of them demonstrated 100% specificity and sensitivity.


Assuntos
Carcinoma de Ehrlich/diagnóstico , Tecnologia de Fibra Óptica/métodos , Espectroscopia de Luz Próxima ao Infravermelho , Animais , Biópsia , Carcinoma de Ehrlich/patologia , Carcinoma de Ehrlich/cirurgia , Proliferação de Células , Feminino , Masculino , Camundongos Endogâmicos BALB C , Estadiamento de Neoplasias , Análise de Componente Principal , Máquina de Vetores de Suporte
10.
Sensors (Basel) ; 17(11)2017 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-29113084

RESUMO

Matching pairs of tumor and non-tumor kidney tissue samples of four patients were investigated ex vivo using a combination of two methods, attenuated total reflection mid infrared spectroscopy and fluorescence spectroscopy, through respectively prepared and adjusted fiber probes. In order to increase the data information content, the measurements on tissue samples in both methods were performed in the same 31 preselected positions. Multivariate data analysis revealed a synergic effect of combining the two methods for the diagnostics of kidney tumor compared to individual techniques.


Assuntos
Espectrofotometria Infravermelho , Análise Multivariada
11.
Anal Chim Acta ; 990: 141-149, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29029737

RESUMO

Plasmonic anisotropic nanoparticles possess a number of hot spots on their surface due to the presence of sharp edges, tips or vertices, leading to a high electric field strength surrounding the nanostructures. In this paper, we explore different plasmonic nanostructures, including anisotropic gold nanostars (AuNSts) and spherical gold nanoparticles, in surface-enhanced infrared absorption spectroscopy (SEIRAS) in an attenuated total reflection (ATR) configuration. In our experiments, we observed up to 10-times enhancement of the infrared (IR) absorption of thioglycolic acid (TGA) and up to 2-times enhancement of signals for bovine serum albumin (BSA) protein on plasmonic nanostructure-based films deposited on a silicon (Si) internal reflection element (IRE) compared to bare Si IRE. The dependence of the observed enhancement on the amount of AuNSts present at the surface of the IRE has been demonstrated. Quantitative studies with both, TGA and BSA were performed, observing that the SEIRA signal can be correlated to the concentration of analyte molecules present within the evanescent field. The calibration curves in the presence of the AuNSts showed enhanced sensitivity as compared with the bare Si IRE. We finally compare efficiencies of anisotropic AuNSts and spherical citrate-capped and "bare" laser-synthesized gold nanoparticles as SEIRAS substrates for the detection of TGA and BSA. The signal obtained from AuNSts was at least 2 times higher for TGA molecules in comparison with spherical gold nanoparticles, which was explained by a more efficient generation of hot spots on anisotropic surface due to the presence of sharp edges, tips or vertices, leading to a high electric field strength surrounding the AuNSts.


Assuntos
Ouro , Nanopartículas Metálicas , Nanoestruturas , Espectrofotometria Infravermelho , Animais , Soroalbumina Bovina/análise , Silício , Tioglicolatos/análise
12.
Int J Mol Sci ; 17(8)2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27517913

RESUMO

Gold nanoparticles (AuNPs) of different size and shape are widely used as photosensitizers for cancer diagnostics and plasmonic photothermal (PPT)/photodynamic (PDT) therapy, as nanocarriers for drug delivery and laser-mediated pathogen killing, even the underlying mechanisms of treatment effects remain poorly understood. There is a need in analyzing and improving the ways to increase accumulation of AuNP in tumors and other crucial steps in interaction of AuNPs with laser light and tissues. In this review, we summarize our recent theoretical, experimental, and pre-clinical results on light activated interaction of AuNPs with tissues and cells. Specifically, we discuss a combined PPT/PDT treatment of tumors and killing of pathogen bacteria with gold-based nanocomposites and atomic clusters, cell optoporation, and theoretical simulations of nanoparticle-mediated laser heating of tissues and cells.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanotubos/química , Fotoquimioterapia , Dióxido de Silício/química
13.
J Biomed Opt ; 20(7): 76017, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26230637

RESUMO

We synthesized and characterized gold nanostars and their silica-coated derivatives with 7- to 50-nm shell thicknesses as contrast agents for optical imaging. The scattering and absorption coefficients of the nanoparticles (NPs) were estimated by means of collimated transmittance and diffuse reflectance/transmittance analyses. The contrasting properties of the nanostructures were studied in optical coherence tomography glass capillary imaging. The silica-coated nanostars with the thickest shell have higher scattering ability in comparison with bare nanostars. Viability assays confirmed weak in vitro toxicity of nanostructures at up to ∼200-µg/mL concentrations. We showed real-time visualization of nanostars in both agarose and cultured cells by analyzing the backscattering signal using a conventional laser confocal microscope. The signal intensity detected from the silica-coated NPs was almost 1.5 times higher in comparison with bare nanostars. To the best of our knowledge, this is the first time that conventional laser confocal microscopy was applied in combined scattering and transmitted light modes to detect the backscattered signal of gold nanostars, which is useful for direct monitoring of the uptake, translocation, and accumulation of NPs in living cells.


Assuntos
Técnicas Citológicas/métodos , Ouro/química , Nanoestruturas/química , Dióxido de Silício/química , Tomografia de Coerência Óptica/métodos , Sobrevivência Celular/efeitos dos fármacos , Ouro/toxicidade , Células HeLa , Humanos , Microscopia Confocal , Nanoestruturas/toxicidade , Tamanho da Partícula , Dióxido de Silício/toxicidade
14.
J Mater Chem B ; 2(10): 1307-1316, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32261445

RESUMO

Further developments of antibacterial coatings based on photocatalytic nanomaterials could be a promising route towards potential environmentally friendly applications in households, public buildings and health care facilities. Hereby we describe a simple chemical approach to synthesize photocatalytic nanomaterial-embedded coatings using gypsum as a binder. Various types of TiO2 nanofiber-based photocatalytic materials (nitrogen-doped and/or palladium nanoparticle decorated) and their composites with gypsum were characterized by means of scanning (SEM) and transmission (TEM) electron microscopy as well as electron and X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX) techniques. These gypsum-based composites can be directly applied as commercially available paints on indoor walls. Herein we report that surfaces coated with photocatalytic composites exhibit excellent antimicrobial properties by killing both methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) under blue light. In the case of MSSA cells, the palladium nanoparticle-decorated and nitrogen-doped TiO2 composites demonstrated the highest antimicrobial activity. For the MRSA strain even pure gypsum samples were proven to be efficient in eradicating Gram-positive human pathogens. The cytotoxicity of freestanding TiO2 nanofibers was revealed by analyzing the viability of HeLa cells using MTT and fluorescent cell assays.

15.
ACS Nano ; 5(9): 7077-89, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21838309

RESUMO

We describe novel composite nanoparticles consisting of a gold-silver nanocage core and a mesoporous silica shell functionalized with the photodynamic sensitizer Yb-2,4-dimethoxyhematoporphyrin (Yb-HP). In addition to the long-wavelength plasmon resonance near 750-800 nm, the composite particles exhibited a 400-nm absorbance peak and two fluorescence peaks, near 580 and 630 nm, corresponding to bound Yb-HP. The fabricated nanocomposites generated singlet oxygen under 630-nm excitation and produced heat under laser irradiation at the plasmon resonance wavelength (750-800 nm). In particular, we observed enhanced killing of HeLa cells incubated with nanocomposites and irradiated by 630-nm light. Furthermore, an additional advantage of fabricated conjugates was an IR-luminescence band (900-1060 nm), originating from Yb(3+) ions of bound Yb-HP and located in the long-wavelength part of the tissue transparency window. This modality was used to control the accumulation and biodistribution of composite particles in mice bearing Ehrlich carcinoma tumors in a comparative study with intravenously injected free Yb-HP molecules. Thus, these multifunctional nanocomposites seem an attractive theranostic platform for simultaneous IR-luminescence diagnostic and photodynamic therapy owing to Yb-HP and for plasmonic photothermal therapy owing to Au-Ag nanocages.


Assuntos
Ouro/química , Hematoporfirinas/química , Nanocompostos , Fotoquímica , Prata/química , Espectrofotometria Infravermelho/métodos , Itérbio/química , Luminescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...