Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269238

RESUMO

Ag-decorated TiO2 nanostructured materials are promising photocatalysts. We used non-standard cryo-lyophilization and ArF laser ablation methods to produce TiO2 nanosheets and TiO2 nanostructured thin films decorated with Ag nanoparticles. Both methods have a common advantage in that they provide a single multiply twinned Ag(0) characterized by {111} twin boundaries. Advanced microscopy techniques and electron diffraction patterns revealed the formation of multiply twinned Ag(0) structures at elevated temperatures (500 °C and 800 °C). The photocatalytic activity was demonstrated by the efficient degradation of 4-chlorophenol and Total Organic Carbon removal using Ag-TiO2 nanosheets, because the multiply twinned Ag(0) served as an immobilized photocatalytically active center. Ag-TiO2 nanostructured thin films decorated with multiply twinned Ag(0) achieved improved photoelectrochemical water splitting due to the additional induction of a plasmonic effect. The photocatalytic properties of TiO2 nanosheets and TiO2 nanostructured thin films were correlated with the presence of defect-twinned structures formed from Ag(0) nanoparticles with a narrow size distribution, tuned to between 10 and 20 nm. This work opens up new possibilities for understanding the defects generated in Ag-TiO2 nanostructured materials and paves the way for connecting their morphology with their photocatalytic activity.

2.
Nanomaterials (Basel) ; 11(8)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34443823

RESUMO

A long-term exposition of antibiotics represents a serious problem for the environment, especially for human health. Heterogeneous photocatalysis opens a green way for their removal. Here, we correlated the structural-textural properties of TiO2 photocatalysts with their photocatalytic performance in ampicillin abatement. The tested nanoparticles included anatase and rutile and their defined mixtures. The nominal size range varied from 5 to 800 nm, Aeroxide P25 serving as an industrial benchmark reference. The degradation mechanism of photocatalytic ampicillin abatement was studied by employing both experimental (UPLC/MS/MS, hydroxyl radical scavenger) and theoretical (quantum calculations) approaches. Photocatalytic activity increased with the increasing particle size, generally, anatase being more active than rutile. Interestingly, in the dark, the ampicillin concentration decreased as well, especially in the presence of very small nanoparticles. Even if the photolysis of ampicillin was negligible, a very high degree of mineralization of antibiotic was achieved photocatalytically using the smallest nanoparticles of both allotropes and their mixtures. Furthermore, for anatase samples, the reaction rate constant increases with increasing crystallite size, while the degree of mineralization decreases. Importantly, the suggested degradation pathway mechanism determined by DFT modeling was in very good agreement with experimentally detected reaction products.

3.
RSC Adv ; 9(40): 22988-23003, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35514506

RESUMO

Titanium dioxide modified with 3 wt% La was prepared via a green freeze-casting method, and its photocatalytic activity was tested in terms of its ability to degrade 4-chlorophenol (4-CP) and remove total organic carbon (TOC). Under annealing conditions, the freeze-cast precursor was transformed into an La-modified anatase with a well-defined 2D TiO2 nanosheet morphology. Rietveld refinement of the X-ray diffraction patterns confirmed the substitutional nature of the La cation that induced local structural variations and involved subtle ion displacement in the TiO2 lattice due to the ionic size effect. Despite nearly identical tetragonal structures, replacement of Ti with La alters the photocatalytic activity through a reduction in band gap energies and an increase in charge carrier mobility. Material annealed at 650 °C exhibited the highest photocatalytic performance and achieved efficient TOC removal. Upon annealing at 800 °C, nanoscale lanthanum-enriched regions were generated due to the diffusive migration of La cations and phase transition from anatase to rutile. The La3+ cation, acting as a structural promoter, supported 2D TiO2 growth with well controlled crystallite size, surface area and porosity. La3+ could be regarded as a potential electronic promoter that can reduce the band gap of 2D TiO2 nanosheets and can provide a signature of the electron transfer and carrier charge separation. Both methods, kinetics of degradation of 4-CP and TOC, provided similar results, revealing that the photocatalytic activity under UV light irradiation increased in the order 950C < 500 °C < 800 °C < 650 °C < TiO2-P25.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...