Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCO Clin Cancer Inform ; 8: e2400008, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38875514

RESUMO

PURPOSE: Rare cancers constitute over 20% of human neoplasms, often affecting patients with unmet medical needs. The development of effective classification and prognostication systems is crucial to improve the decision-making process and drive innovative treatment strategies. We have created and implemented MOSAIC, an artificial intelligence (AI)-based framework designed for multimodal analysis, classification, and personalized prognostic assessment in rare cancers. Clinical validation was performed on myelodysplastic syndrome (MDS), a rare hematologic cancer with clinical and genomic heterogeneities. METHODS: We analyzed 4,427 patients with MDS divided into training and validation cohorts. Deep learning methods were applied to integrate and impute clinical/genomic features. Clustering was performed by combining Uniform Manifold Approximation and Projection for Dimension Reduction + Hierarchical Density-Based Spatial Clustering of Applications with Noise (UMAP + HDBSCAN) methods, compared with the conventional Hierarchical Dirichlet Process (HDP). Linear and AI-based nonlinear approaches were compared for survival prediction. Explainable AI (Shapley Additive Explanations approach [SHAP]) and federated learning were used to improve the interpretation and the performance of the clinical models, integrating them into distributed infrastructure. RESULTS: UMAP + HDBSCAN clustering obtained a more granular patient stratification, achieving a higher average silhouette coefficient (0.16) with respect to HDP (0.01) and higher balanced accuracy in cluster classification by Random Forest (92.7% ± 1.3% and 85.8% ± 0.8%). AI methods for survival prediction outperform conventional statistical techniques and the reference prognostic tool for MDS. Nonlinear Gradient Boosting Survival stands in the internal (Concordance-Index [C-Index], 0.77; SD, 0.01) and external validation (C-Index, 0.74; SD, 0.02). SHAP analysis revealed that similar features drove patients' subgroups and outcomes in both training and validation cohorts. Federated implementation improved the accuracy of developed models. CONCLUSION: MOSAIC provides an explainable and robust framework to optimize classification and prognostic assessment of rare cancers. AI-based approaches demonstrated superior accuracy in capturing genomic similarities and providing individual prognostic information compared with conventional statistical methods. Its federated implementation ensures broad clinical application, guaranteeing high performance and data protection.


Assuntos
Inteligência Artificial , Medicina de Precisão , Humanos , Prognóstico , Medicina de Precisão/métodos , Feminino , Doenças Raras/classificação , Doenças Raras/genética , Doenças Raras/diagnóstico , Masculino , Aprendizado Profundo , Neoplasias/classificação , Neoplasias/genética , Neoplasias/diagnóstico , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/classificação , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/terapia , Algoritmos , Pessoa de Meia-Idade , Idoso , Análise por Conglomerados
2.
JCO Clin Cancer Inform ; 7: e2300021, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37390377

RESUMO

PURPOSE: Synthetic data are artificial data generated without including any real patient information by an algorithm trained to learn the characteristics of a real source data set and became widely used to accelerate research in life sciences. We aimed to (1) apply generative artificial intelligence to build synthetic data in different hematologic neoplasms; (2) develop a synthetic validation framework to assess data fidelity and privacy preservability; and (3) test the capability of synthetic data to accelerate clinical/translational research in hematology. METHODS: A conditional generative adversarial network architecture was implemented to generate synthetic data. Use cases were myelodysplastic syndromes (MDS) and AML: 7,133 patients were included. A fully explainable validation framework was created to assess fidelity and privacy preservability of synthetic data. RESULTS: We generated MDS/AML synthetic cohorts (including information on clinical features, genomics, treatment, and outcomes) with high fidelity and privacy performances. This technology allowed resolution of lack/incomplete information and data augmentation. We then assessed the potential value of synthetic data on accelerating research in hematology. Starting from 944 patients with MDS available since 2014, we generated a 300% augmented synthetic cohort and anticipated the development of molecular classification and molecular scoring system obtained many years later from 2,043 to 2,957 real patients, respectively. Moreover, starting from 187 MDS treated with luspatercept into a clinical trial, we generated a synthetic cohort that recapitulated all the clinical end points of the study. Finally, we developed a website to enable clinicians generating high-quality synthetic data from an existing biobank of real patients. CONCLUSION: Synthetic data mimic real clinical-genomic features and outcomes, and anonymize patient information. The implementation of this technology allows to increase the scientific use and value of real data, thus accelerating precision medicine in hematology and the conduction of clinical trials.


Assuntos
Hematologia , Leucemia Mieloide Aguda , Humanos , Medicina de Precisão , Inteligência Artificial , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...