Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(42): 39690-39698, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37901544

RESUMO

While Cd-based luminescent nanocrystals (NCs) are the most mature NCs for fabricating efficient red light-emitting diodes (LEDs), their toxicity related limitation is inevitable, making it necessary to find a promising alternative. From this point of view, multishell-coated, red-emissive InP-based NCs are excellent luminescent nanomaterials for use as an emissive layer in electroluminescent (EL) devices. However, due to the presence of oxidation states, they suffer from a wide emission spectrum, which limits their performance. This study uses tris(dimethylamino)phosphine (3DMA-P) as a low-cost aminophosphine precursor and a double HF treatment to suggest an upscaled, cost-effective, and one-pot hot-injection synthesis of purely red-emissive InP-based NCs. The InP core structures were coated with thick layers of ZnSe and ZnS shells to prevent charge delocalization and to create a narrow size distribution. The purified NCs showed an intense emission signal as narrow as 43 nm across the entire red wavelength range (626-670 nm) with an emission quantum efficiency of 74% at 632 nm. The purified samples also showed an emission quantum efficiency of 60% for far-red wavelengths of 670 nm with a narrow full width of 50 nm. The samples showed a relatively long average emission lifetime of 50-70 ns with a biexponential decay profile. To demonstrate the practical ability of the prepared NCs in optoelectronics, we fabricated a red-emissive InP-based LEDs. The best-performing device showed an external quantum efficiency (EQE) of 1.16%, a luminance of 1039 cd m-2, and a current efficiency of 0.88 cd A-1.

2.
Appl Opt ; 56(22): 6311-6316, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29047829

RESUMO

We employed a midinfrared frequency comb source for methane detection in ambient air. The transmitted spectra over a bandwidth of about 500 nm were recorded with an optical spectrum analyzer under various experimental conditions of different path lengths. The normalized absorption spectra were compared and fitted with simulations, yielding quantitative values of concentrations of methane and water vapor in the ambient air. The 3σ detection limit was ∼6.6×10-7 cm-1 in ambient air for a broad spectral range, achieved with a path length of ∼590 m. This approach provides a broad spectral range, a large dynamic range, high sensitivity, and accurate calibration. The performed analysis of the residuals shows that an excellent agreement between the measured and calculated spectral profiles was obtained.

3.
Opt Express ; 22(19): 23026-33, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25321773

RESUMO

We present a femtosecond frequency comb vernier spectrometer in the near infrared with a femtosecond Er doped fiber laser, a scanning high-finesse cavity and an InGaAs camera. By utilizing the properties of a frequency comb and a scanning high-finesse cavity such a spectrometer provides broad spectral bandwidth, high spectral resolution, and high detection sensitivity on a short time scale. We achieved an absorption sensitivity of ~8 × 10(-8) cm(-1)Hz(-1/2), corresponding to a detection limit of ~70 ppbv for acetylene, with a resolution of ~1.1 GHz in single images taken in 0.5 seconds and covering a frequency range of ~5 THz. Such measurements have broad applications for sensing greenhouse gases in this fingerprint near infrared region with a simple apparatus.


Assuntos
Acetileno/análise , Gases/análise , Lasers , Limite de Detecção , Espectroscopia de Luz Próxima ao Infravermelho/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...