Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Am J Physiol Renal Physiol ; 318(5): F1086-F1099, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32174143

RESUMO

Unilateral ischemia-reperfusion (UIR) injury leads to progressive renal atrophy and tubulointerstitial fibrosis (TIF) and is commonly used to investigate the pathogenesis of the acute kidney injury-chronic kidney disease transition. Although it is well known that contralateral nephrectomy (CNX), even 2 wk post-UIR injury, can improve recovery, the physiological mechanisms and tubular signaling pathways mediating such improved recovery remain poorly defined. Here, we examined the renal hemodynamic and tubular signaling pathways associated with UIR injury and its reversal by CNX. Male Sprague-Dawley rats underwent left UIR or sham UIR and 2 wk later CNX or sham CNX. Blood pressure, left renal blood flow (RBF), and total glomerular filtration rate were assessed in conscious rats for 3 days before and over 2 wk after CNX or sham CNX. In the presence of a contralateral uninjured kidney, left RBF was lower (P < 0.05) from 2 to 4 wk following UIR (3.6 ± 0.3 mL/min) versus sham UIR (9.6 ± 0.3 mL/min). Without CNX, extensive renal atrophy, TIF, and tubule dedifferentiation, but minimal pimonidazole and hypoxia-inducible factor-1α positivity in tubules, were present at 4 wk post-UIR injury. Conversely, CNX led (P < 0.05) to sustained increases in left RBF (6.2 ± 0.6 mL/min) that preceded the increases in glomerular filtration rate. The CNX-induced improvement in renal function was associated with renal hypertrophy, more redifferentiated tubules, less TIF, and robust pimonidazole and hypoxia-inducible factor-1α staining in UIR injured kidneys. Thus, contrary to expectations, indexes of hypoxia are not observed with the extensive TIF at 4 wk post-UIR injury in the absence of CNX but are rather associated with the improved recovery of renal function and structure following CNX.


Assuntos
Injúria Renal Aguda/fisiopatologia , Rim/irrigação sanguínea , Circulação Renal , Insuficiência Renal Crônica/etiologia , Traumatismo por Reperfusão/fisiopatologia , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Animais , Atrofia , Hipóxia Celular , Modelos Animais de Doenças , Progressão da Doença , Fibrose , Hemodinâmica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Rim/metabolismo , Rim/patologia , Masculino , Nefrectomia , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/fisiopatologia , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
J Am Soc Nephrol ; 31(2): 324-336, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792155

RESUMO

BACKGROUND: Renal autoregulation maintains stable renal function despite BP fluctuations and protects glomerular capillaries from hypertensive injury. However, real-time dynamics of renal autoregulation in conscious animals have not been characterized. METHODS: To develop novel analytic methods for assessing renal autoregulation, we recorded concurrent BP and renal blood flow in conscious rats, comparing animals with renal autoregulation that was intact versus impaired (from 3/4 nephrectomy), before and after additional impairment (from the calcium channel blocker amlodipine). We calculated autoregulatory indices for adjacent short segments of increasing length (0.5, 1, 2.5, 5, 10, and 20 seconds) that exhibited a mean BP difference of at least 5 mm Hg. RESULTS: Autoregulatory restoration of renal blood flow to baseline after BP changes in conscious rats occurs rapidly, in 5-10 seconds. The response is significantly slower in states of impaired renal autoregulation, enhancing glomerular pressure exposure. However, in rats with severe renal autoregulation impairment (3/4 nephrectomy plus amlodipine), renal blood flow in conscious animals (but not anesthetized animals) was still restored to baseline, but took longer (15-20 seconds). Consequently, the ability to maintain overall renal blood flow stability is not compromised in conscious rats with impaired renal autoregulation. CONCLUSIONS: These novel findings show the feasibility of renal autoregulation assessment in conscious animals with spontaneous BP fluctuations and indicate that transient increases in glomerular pressure may play a greater role in the pathogenesis of hypertensive glomerulosclerosis than previously thought. These data also show that unidentified mechanosensitive mechanisms independent of known renal autoregulation mechanisms and voltage-gated calcium channels can maintain overall renal blood flow and GFR stability despite severely impaired renal autoregulation.


Assuntos
Pressão Sanguínea/fisiologia , Homeostase/fisiologia , Circulação Renal/fisiologia , Animais , Hipertensão/complicações , Hipertensão/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley
3.
Artigo em Inglês | MEDLINE | ID: mdl-38288370

RESUMO

A convolutional deep neural network is employed to assess renal autoregulation using time series of arterial blood pressure and blood flow rate measurements in conscious rats. The network is trained using representative data samples from rats with intact autoregulation and rats whose autoregulation is impaired by the calcium channel blocker amlodipine. Network performance is evaluated using test data of the types used for training, but also with data from other models for autoregulatory impairment, including different calcium channel blockers and also renal mass reduction. The network is shown to provide effective classification for impairments from calcium channel blockers. However, the assessment of autoregulation when impaired by renal mass reduction was not as clear, evidencing a different signature in the hemodynamic data for that impairment model. When calcium channel blockers were given to those animals, however, the classification again was effective.

4.
Am J Physiol Renal Physiol ; 309(9): F791-9, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26109088

RESUMO

The diet-induced obesity (DIO) model is frequently used to examine the pathogenesis of obesity-related pathologies; however, only minimal glomerulosclerosis (GS) has been reported after 3 mo. We investigated if GS develops over longer periods of DIO and examined the potential role of hemodynamic mechanisms in its pathogenesis. Eight-week-old male obesity-prone (OP) and obesity-resistant (OR) rats (Charles River) were administered a moderately high-fat diet for 5 mo. Radiotelemetrically measured blood pressure, proteinuria, and GS were assessed. OP (n=10) rats developed modest hypertension (142±3 vs. 128±2 mmHg, P<0.05) and substantial levels of proteinuria (63±12 vs. 12±1 mg/day, P<0.05) and GS (7.7±1.4% vs. 0.4±0.2%) compared with OR rats (n=8). Potential hemodynamic mechanisms of renal injury were assessed in additional groups of OP and OR rats fed a moderately high-fat diet for 3 mo. Kidney weight (4.3±0.2 vs. 4.3±0.1 g), glomerular filtration rate (3.3±0.3 vs. 3.1±0.1 ml/min), and glomerular volume (1.9±0.1 vs. 2.0±0.1 µm3×10(-6)) were similar between OP (n=6) and OR (n=9) rats. Renal blood flow autoregulation was preserved in both OP (n=7) and OR (n=7) rats. In contrast, Nω-nitro-L-arginine methyl ester (L-NAME) administration in conscious, chronically instrumented OP (n=11) rats resulted in 15% and 39% increases in blood pressure and renal vascular resistance, respectively, and a 16% decrease in renal blood flow. Minimal effects of L-NAME were seen in OR (n=9) rats. In summary, DIO-associated GS is preceded by an increased hemodynamic sensitivity to L-NAME but not renal hypertrophy or hyperfiltration.


Assuntos
Dieta Hiperlipídica , Taxa de Filtração Glomerular/efeitos dos fármacos , Glomerulonefrite/etiologia , Hemodinâmica/efeitos dos fármacos , Glomérulos Renais/efeitos dos fármacos , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico/metabolismo , Obesidade/etiologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Glomerulonefrite/metabolismo , Glomerulonefrite/patologia , Glomerulonefrite/fisiopatologia , Hipertensão/etiologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Hipertrofia , Glomérulos Renais/irrigação sanguínea , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Glomérulos Renais/fisiopatologia , Masculino , Óxido Nítrico Sintase/metabolismo , Obesidade/metabolismo , Proteinúria/etiologia , Proteinúria/metabolismo , Proteinúria/fisiopatologia , Ratos Sprague-Dawley , Circulação Renal/efeitos dos fármacos , Fatores de Tempo , Resistência Vascular/efeitos dos fármacos
5.
J Am Soc Nephrol ; 26(8): 1765-76, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25810494

RESUMO

The transition of AKI to CKD has major clinical significance. As reviewed here, recent studies show that a subpopulation of dedifferentiated, proliferating tubules recovering from AKI undergo pathologic growth arrest, fail to redifferentiate, and become atrophic. These abnormal tubules exhibit persistent, unregulated, and progressively increasing profibrotic signaling along multiple pathways. Paracrine products derived therefrom perturb normal interactions between peritubular capillary endothelium and pericyte-like fibroblasts, leading to myofibroblast transformation, proliferation, and fibrosis as well as capillary disintegration and rarefaction. Although signals from injured endothelium and inflammatory/immune cells also contribute, tubule injury alone is sufficient to produce the interstitial pathology required for fibrosis. Localized hypoxia produced by microvascular pathology may also prevent tubule recovery. However, fibrosis is not intrinsically progressive, and microvascular pathology develops strictly around damaged tubules; thus, additional deterioration of kidney structure after the transition of AKI to CKD requires new acute injury or other mechanisms of progression. Indeed, experiments using an acute-on-chronic injury model suggest that additional loss of parenchyma caused by failed repair of AKI in kidneys with prior renal mass reduction triggers hemodynamically mediated processes that damage glomeruli to cause progression. Continued investigation of these pathologic mechanisms should reveal options for preventing renal disease progression after AKI.


Assuntos
Injúria Renal Aguda/complicações , Túbulos Renais/fisiopatologia , Insuficiência Renal Crônica/etiologia , Injúria Renal Aguda/fisiopatologia , Capilares/fisiopatologia , Progressão da Doença , Humanos , Hipóxia/complicações , Túbulos Renais/metabolismo , Nefroesclerose/etiologia , Nefroesclerose/metabolismo , Circulação Renal , Vasoconstrição
7.
Am J Physiol Renal Physiol ; 308(3): F252-60, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25477472

RESUMO

ANG II is thought to increase the susceptibility to hypertension-induced renal disease (HIRD) via blood pressure (BP)-dependent and BP-independent pathways; however, the quantitative relationships between BP and HIRD have not been examined in ANG II-infused hypertensive rats. We compared the relationship between radiotelemetrically measured BP and HIRD in Sprague-Dawley rats (Harlan) chronically administered ANG II (300-500 ng·kg(-1)·min(-1), n = 19) for 4 wk versus another commonly employed pharmacological model of hypertension induced by the chronic administration of N(ω)-nitro-l-arginine methyl ester (l-NAME, 50 mg·kg(-1)·day(-1), n = 23). [DOSAGE ERROR CORRECTED]. Despite the significantly higher average systolic BP associated with ANG II (191.1 ± 3.2 mmHg) versus l-NAME (179.9 ± 2.5 mmHg) administration, the level of HIRD was very modest in the ANG II versus l-NAME model as evidenced by significantly less glomerular injury (6.6 ± 1.3% vs. 11.3 ± 1.5%, respectively), tubulointerstitial injury (0.3 ± 0.1 vs. 0.7 ± 0.1 injury score, respectively), proteinuria (66.3 ± 10.0 vs. 117.5 ± 10.1 mg/day, respectively), and serum creatinine levels (0.5 ± 0.04 vs. 0.9 ± 0.07 mg/dl, respectively). Given that HIRD severity is expected to be a function of renal microvascular BP transmission, BP-renal blood flow (RBF) relationships were examined in additional conscious rats administered ANG II (n = 7) or l-NAME (n = 8). Greater renal vasoconstriction was observed during ANG II versus l-NAME administration (41% vs. 23% decrease in RBF from baseline). Moreover, administration of ANG II, but not l-NAME, led to a unique BP-RBF pattern in which the most substantial decreases in RBF were observed during spontaneous increases in BP. We conclude that the hemodynamic effects of ANG II may mediate the strikingly low susceptibility to HIRD in the ANG II-infused model of hypertension in rats.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Angiotensina II/farmacologia , Hemodinâmica/efeitos dos fármacos , Hipertensão/induzido quimicamente , Rim/efeitos dos fármacos , Animais , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Rim/irrigação sanguínea , Masculino , Ratos Sprague-Dawley , Circulação Renal/efeitos dos fármacos
8.
Hypertension ; 64(4): 801-7, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24958497

RESUMO

Most patients with essential hypertension do not exhibit substantial renal damage. Renal autoregulation by preventing glomerular transmission of systemic pressures has been postulated to mediate this resistance. Conversely, malignant nephrosclerosis (MN) has been postulated to develop when severe hypertension exceeds a critical ceiling. If the concept is valid, even modest blood pressure (BP) reductions to below this threshold regardless of antihypertensive class (1) should prevent MN and (2) lead to the healing of the already developed MN lesions. Both predicates were tested using BP radiotelemetry in the stroke-prone spontaneously hypertensive rats receiving 1% NaCl as drinking fluid for 4 weeks. Severe hypertension (final 2 weeks average systolic BP, >200 mm Hg) and MN (histological damage score 36±5; n=27) developed in the untreated stroke-prone spontaneously hypertensive rats but were prevented by all antihypertensive classes (enalapril [n=15], amlodipine [n=13], or a hydralazine/hydrochlorothiazide combination [n=15]) if the final 2-week systolic BP remained <190 mm Hg. More impressively, modest systolic BP reductions to 160 to 180 mm Hg (hydralazine/hydrochlorothiazide regimen) initiated at ≈4 weeks in additional untreated rats after MN had already developed (injury score 35±4 in the right kidney removed before therapy) led to a striking resolution of the vascular and glomerular MN injury over 2 to 3 weeks (post-therapy left kidney injury score 9±2, P<0.0001; n=27). Proteinuria also declined rapidly from 122±9.5 mg/24 hours before therapy to 20.5±3.6 mg 1 week later. These data clearly demonstrate the barotrauma-mediated pathogenesis of MN and the striking capacity for spontaneous and rapid repair of hypertensive kidney damage if new injury is prevented.


Assuntos
Pressão Sanguínea/fisiologia , Modelos Animais de Doenças , Hipertensão/fisiopatologia , Nefroesclerose/fisiopatologia , Anlodipino/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Quimioterapia Combinada , Enalapril/farmacologia , Humanos , Hidralazina/farmacologia , Hidroclorotiazida/farmacologia , Hipertensão/prevenção & controle , Masculino , Nefroesclerose/prevenção & controle , Ratos , Ratos Endogâmicos SHR , Valores de Referência , Resultado do Tratamento
9.
J Am Soc Nephrol ; 25(7): 1496-507, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24511135

RESUMO

Preexisting CKD may affect the severity of and/or recovery from AKI. We assessed the impact of prior graded normotensive renal mass reduction on ischemia-reperfusion-induced AKI. Rats underwent 40 minutes of ischemia 2 weeks after right uninephrectomy and surgical excision of both poles of the left kidney (75% reduction of renal mass), right uninephrectomy (50% reduction of renal mass), or sham reduction of renal mass. The severity of AKI was comparable among groups, which was reflected by similarly increased serum creatinine (SCr; approximately 4.5 mg/dl) at 2 days, tubule necrosis at 3 days, and vimentin-expressing regenerating tubules at 7 days postischemia-reperfusion. However, SCr remained elevated compared with preischemia-reperfusion values, and more tubules failed to differentiate during late recovery 4 weeks after ischemia-reperfusion in rats with 75% renal mass reduction relative to other groups. Tubules that failed to differentiate continued to produce vimentin, exhibited vicarious proliferative signaling, and expressed less vascular endothelial growth factor but more profibrotic peptides. The disproportionate failure of regenerating tubules to redifferentiate in rats with 75% renal mass reduction associated with more severe capillary rarefaction and greater tubulointerstitial fibrosis. Furthermore, initially normotensive rats with 75% renal mass reduction developed hypertension and proteinuria, 2-4 weeks postischemia-reperfusion. In summary, severe (>50%) renal mass reduction disproportionately compromised tubule repair, diminished capillary density, and promoted fibrosis with hypertension after ischemia-reperfusion-induced AKI in rats, suggesting that accelerated declines of renal function may occur after AKI in patients with preexisting CKD.


Assuntos
Injúria Renal Aguda/etiologia , Túbulos Renais/patologia , Rim/anatomia & histologia , Animais , Fibrose , Rim/cirurgia , Masculino , Tamanho do Órgão , Ratos , Ratos Sprague-Dawley , Índice de Gravidade de Doença
10.
Am J Physiol Renal Physiol ; 305(7): F1074-84, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23825067

RESUMO

Chronic ANG II infusion in rodents is widely used as an experimental model of hypertension, yet very limited data are available describing the resulting blood pressure-renal blood flow (BP-RBF) relationships in conscious rats. Accordingly, male Sprague-Dawley rats (n = 19) were instrumented for chronic measurements of BP (radiotelemetry) and RBF (Transonic Systems, Ithaca, NY). One week later, two or three separate 2-h recordings of BP and RBF were obtained in conscious rats at 24-h intervals, in addition to separate 24-h BP recordings. Rats were then administered either ANG II (n = 11, 125 ng·kg(-1)·min(-1)) or phenylephrine (PE; n = 8, 50 mg·kg(-1)·day(-1)) as a control, ANG II-independent, pressor agent. Three days later the BP-RBF and 24-h BP recordings were repeated over several days. Despite similar increases in BP, PE led to significantly greater BP lability at the heart beat and very low frequency bandwidths. Conversely, ANG II, but not PE, caused significant renal vasoconstriction (a 62% increase in renal vascular resistance and a 21% decrease in RBF) and increased variability in BP-RBF relationships. Transfer function analysis of BP (input) and RBF (output) were consistent with a significant potentiation of the renal myogenic mechanism during ANG II administration, likely contributing, in part, to the exaggerated reductions in RBF during periods of BP elevations. We conclude that relatively equipressor doses of ANG II and PE lead to greatly different ambient BP profiles and effects on the renal vasculature when assessed in conscious rats. These data may have important implications regarding the pathogenesis of hypertension-induced injury in these models of hypertension.


Assuntos
Angiotensina II/administração & dosagem , Angiotensina II/fisiologia , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Hipertensão/induzido quimicamente , Fenilefrina/administração & dosagem , Circulação Renal/efeitos dos fármacos , Vasoconstritores/farmacologia , Animais , Estado de Consciência , Frequência Cardíaca/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Infusões Intravenosas , Masculino , Ratos , Ratos Sprague-Dawley , Telemetria
11.
Curr Opin Nephrol Hypertens ; 22(1): 1-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23132368

RESUMO

PURPOSE OF REVIEW: Despite apparent blood pressure (BP) control and renin-angiotensin system (RAS) blockade, the chronic kidney disease (CKD) outcomes have been suboptimal. Accordingly, this review is addressed to renal microvascular and autoregulatory impairments that underlie the enhanced dynamic glomerular BP transmission in CKD progression. RECENT FINDINGS: Clinical data suggest that failure to achieve adequate 24-h BP control is likely contributing to the suboptimal outcomes in CKD. Whereas evidence continues to accumulate regarding the importance of preglomerular autoregulatory impairment to the dynamic glomerular BP transmission, emerging data indicate that nitric oxide-mediated efferent vasodilation may play an important role in mitigating the consequences of glomerular hypertension. By contrast, the vasoconstrictor effects of angiotensin II are expected to potentially reduce glomerular barotrauma and possibly enhance ischemic injury. When adequate BP measurement methods are used, the evidence for BP-independent injury initiating mechanisms is considerably weaker and the renoprotection by RAS blockade largely parallels its antihypertensive effectiveness. SUMMARY: Adequate 24-h BP control presently offers the most feasible intervention for reducing glomerular BP transmission and improving suboptimal outcomes in CKD. Investigations addressed to improving myogenic autoregulation and/or enhancing nitric oxide-mediated efferent dilation in addition to the more downstream mediators may provide additional future therapeutic targets.


Assuntos
Homeostase , Hipertensão Renal/tratamento farmacológico , Hipertensão Renal/fisiopatologia , Glomérulos Renais/irrigação sanguínea , Microvasos/fisiopatologia , Insuficiência Renal Crônica/etiologia , Angiotensina II/metabolismo , Pressão Sanguínea , Progressão da Doença , Humanos , Hipertensão Renal/complicações , Óxido Nítrico/metabolismo , Insuficiência Renal Crônica/metabolismo
12.
Am J Med ; 125(11): 1057-62, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22906957

RESUMO

Current therapeutic interventions to retard the progression of chronic kidney disease have yielded disappointing outcomes despite adequate renin-angiotensin system blockade. The parameters to gauge the adequacy of blood pressure control need to be reassessed because clinic blood pressure constitutes a poor gauge of such control. The biologically relevant parameter for hypertensive target organ damage is total blood pressure burden, and reliance on isolated clinic blood pressure measurements per se does not accurately reflect the total blood pressure burden. This is particularly relevant to the population with chronic kidney disease in whom masked daytime or nocturnal hypertension and blood pressure lability are both widely prevalent and more difficult to control. Consequently, it is possible that the limited success currently being achieved in preventing or attenuating chronic kidney disease progression may be attributable in part to suboptimal 24-hour blood pressure control. Recent data and analyses also indicate that blood pressure variability, instability, episodic and nocturnal blood pressure elevations, and maximum systolic blood pressure may constitute additional strong predictors of the risk of target organ damage independently of mean systolic blood pressure. Accordingly, we suggest that future research should include the development of safe and effective strategies to achieve around-the-clock blood pressure control in addition to targeting mechanisms that reduce intrarenal blood pressure transmission or interrupt subsequent downstream pathways. Meanwhile, more aggressive use of patient education and home blood pressure monitoring with selection of longer-acting antihypertensive agents or nocturnal dosing should be considered to improve the current suboptimal results.


Assuntos
Anti-Hipertensivos/uso terapêutico , Hipertensão/tratamento farmacológico , Insuficiência Renal Crônica/tratamento farmacológico , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Determinação da Pressão Arterial , Progressão da Doença , Humanos , Hipertensão/complicações , Hipertensão/fisiopatologia , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/fisiopatologia
13.
Am J Physiol Renal Physiol ; 302(9): F1210-23, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22301622

RESUMO

We investigated the signaling basis for tubule pathology during fibrosis after renal injury. Numerous signaling pathways are activated physiologically to direct tubule regeneration after acute kidney injury (AKI) but several persist pathologically after repair. Among these, transforming growth factor (TGF)-ß is particularly important because it controls epithelial differentiation and profibrotic cytokine production. We found that increased TGF-ß signaling after AKI is accompanied by PTEN loss from proximal tubules (PT). With time, subpopulations of regenerating PT with persistent loss of PTEN (phosphate and tension homolog) failed to differentiate, became growth arrested, expressed vimentin, displayed profibrotic JNK activation, and produced PDGF-B. These tubules were surrounded by fibrosis. In contrast, PTEN recovery was associated with epithelial differentiation, normal tubule repair, and less fibrosis. This beneficial outcome was promoted by TGF-ß antagonism. Tubule-specific induction of TGF-ß led to PTEN loss, JNK activation, and fibrosis even without prior AKI. In PT culture, high TGF-ß depleted PTEN, inhibited differentiation, and activated JNK. Conversely, TGF-ß antagonism increased PTEN, promoted differentiation, and decreased JNK activity. Cre-Lox PTEN deletion suppressed differentiation, induced growth arrest, and activated JNK. The low-PTEN state with JNK signaling and fibrosis was ameliorated by contralateral nephrectomy done 2 wk after unilateral ischemia, suggesting reversibility of the low-PTEN dysfunctional tubule phenotype. Vimentin-expressing tubules with low-PTEN and JNK activation were associated with fibrosis also after tubule-selective AKI, and with human chronic kidney diseases of diverse etiology. By preventing tubule differentiation, the low-PTEN state may provide a platform for signals initiated physiologically to persist pathologically and cause fibrosis after injury.


Assuntos
Diferenciação Celular , Túbulos Renais Proximais/patologia , MAP Quinase Quinase 4/fisiologia , PTEN Fosfo-Hidrolase/deficiência , Fenótipo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Injúria Renal Aguda/patologia , Injúria Renal Aguda/fisiopatologia , Animais , Células Cultivadas , Doença Crônica , Fibrose , Humanos , Nefropatias/patologia , Nefropatias/fisiopatologia , Túbulos Renais Proximais/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos , Modelos Animais , Ratos , Ratos Sprague-Dawley , Regeneração/fisiologia , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia
14.
Am J Physiol Renal Physiol ; 302(1): F173-82, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21937607

RESUMO

The N(ω)-nitro-l-arginine methyl ester (l-NAME) model is widely employed to investigate the role of nitric oxide (NO) in renal injury. The present studies show that Sprague-Dawley rats from Harlan (H) and Charles River (CR) exhibit strikingly large differences in susceptibility to l-NAME nephropathy. After 4 wk of l-NAME (∼50 mg·kg(-1)·day(-1) in drinking water), H rats (n = 13) exhibited the expected hypertension [average radiotelemetric systolic blood pressure (BP), 180 ± 3 mmHg], proteinuria (136 ± 17 mg/24 h), and glomerular injury (GI) (12 ± 2%). By contrast, CR rats developed less hypertension (142 ± 4), but surprisingly no proteinuria or GI, indicating a lack of glomerular hypertension. Additional studies showed that conscious H, but not CR, rats exhibit dose-dependent renal vasoconstriction after l-NAME. To further investigate these susceptibility differences, l-NAME was given 2 wk after 3/4 normotensive nephrectomy (NX) and comparably impaired renal autoregulation in CR-NX and H-NX rats. CR-NX rats, nevertheless, still failed to develop proteinuria and GI despite moderate hypertension (144 ± 2 mmHg, n = 29). By contrast, despite an 80-90% l-NAME dose reduction and lesser BP increases (169 ± 4 mmHg), H-NX rats (n = 20) developed greater GI (26 ± 3%) compared with intact H rats. Linear regression analysis showed significant (P < 0.01) differences in the slope of the relationship between BP and GI between H-NX (slope 0.56 ± 0.14; r = 0.69; P < 0.008) and CR-NX (slope 0.09 ± 0.06; r = 0.29; P = 0.12) rats. These data indicate that blunted BP responses to l-NAME in the CR rats are associated with BP-independent resistance to nephropathy, possibly mediated by a resistance to the renal (efferent arteriolar) vasoconstrictive effects of NO inhibition.


Assuntos
Pressão Sanguínea/fisiologia , Hipertensão/induzido quimicamente , Nefropatias/induzido quimicamente , Glomérulos Renais/efeitos dos fármacos , Óxido Nítrico/antagonistas & inibidores , Proteinúria/induzido quimicamente , Ratos Sprague-Dawley/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Masculino , NG-Nitroarginina Metil Éster , Nefrectomia , Nitratos/urina , Óxido Nítrico Sintase/antagonistas & inibidores , Nitritos/urina , Ratos , Vasoconstrição/efeitos dos fármacos
17.
Am J Physiol Renal Physiol ; 298(5): F1078-94, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20200097

RESUMO

Recently published epidemiological and outcome analysis studies have brought to our attention the important role played by acute kidney injury (AKI) in the progression of chronic kidney disease (CKD) to end-stage renal disease (ESRD). AKI accelerates progression in patients with CKD; conversely, CKD predisposes patients to AKI. This research gives credence to older, well-thought-out wisdom that recovery from AKI is often not complete and is marked by residual structural damage. It also mirrors older experimental observations showing that unilateral nephrectomy, a surrogate for loss of nephrons by disease, compromises structural recovery and worsens tubulointerstitial fibrosis after ischemic AKI. Moreover, review of a substantial body of work on the relationships among reduced renal mass, hypertension, and pathology associated with these conditions suggests that impaired myogenic autoregulation of blood flow in the setting of hypertension, the arteriolosclerosis that results, and associated recurrent ischemic AKI in microscopic foci play important roles in the development of progressively increasing tubulointerstitial fibrosis. How nutrition, an additional factor that profoundly affects renal disease progression, influences these events needs reevaluation in light of information on the effects of calories vs. protein and animal vs. vegetable protein on injury and progression. Considerations based on published and emerging data suggest that a pathology that develops in regenerating tubules after AKI characterized by failure of differentiation and persistently high signaling activity is the proximate cause that drives downstream events in the interstitium: inflammation, capillary rarefaction, and fibroblast proliferation. In light of this information, we advance a comprehensive hypothesis regarding the pathophysiology of AKI as it relates to the progression of kidney disease. We discuss the implications of this pathophysiology for developing efficient therapeutic strategies to delay progression and avert ESRD.


Assuntos
Injúria Renal Aguda/fisiopatologia , Progressão da Doença , Nefropatias/fisiopatologia , Falência Renal Crônica/fisiopatologia , Injúria Renal Aguda/complicações , Animais , Doença Crônica , Modelos Animais de Doenças , Fibrose , Humanos , Rim/patologia , Nefropatias/etiologia , Falência Renal Crônica/etiologia
19.
Kidney Int ; 75(10): 1006-8, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19404281

RESUMO

Angiotensin II is believed to mediate blood pressure-independent progressive renal damage in chronic kidney disease (CKD). The evidence is less definitive than has been implied, and the studies by Benndorf et al. suggest that angiotensin II acting through its type 2 receptor may even have beneficial effects, although the responsible mechanisms remain to be defined. These and other data suggest that the concept of blood pressure-independent angiotensin signaling being uniformly deleterious in CKD is an oversimplification that needs re-evaluation.


Assuntos
Angiotensina II/fisiologia , Falência Renal Crônica/metabolismo , Receptor Tipo 2 de Angiotensina/fisiologia , Animais , Pressão Sanguínea , Humanos , Receptor Tipo 2 de Angiotensina/deficiência , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...