Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 153: 88-102, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26499393

RESUMO

Equilibrium and kinetic properties of cyanide and imidazole binding to the heme domains of Sinorhizobium meliloti and Bradyrhizobium japonicum FixL (SmFixLH and BjFixLH) have been investigated between pH5 and 11. KD determinations were made at integral pH values, with the strongest binding at pH9 for both ligands. KD for the cyanide complexes of BjFixLH and SmFixLH is 0.15±0.09 and 0.50±0.20µM, respectively, and 0.70±0.01mM for imido-BjFixLH. The association rate constants are pH dependent with maximum values of 443±8 and 252±61M(-1)s(-1) for cyano complexes of BjFixLH and SmFixLH and (5.0±0.3)×10(4) and (7.0±1.4)×10(4)M(-1)s(-1) for the imidazole complexes. The dissociation rate constants are essentially independent of pH above pH5; (1.2±0.3)×10(-4) and (1.7±0.3)×10(-4)s(-1) for the cyano complexes of BjFixLH and SmFixLH, and (73±19) and (77±14) s(-1) for the imidazole complexes. Two ionizable groups in FixLH affect the rate of ligand binding. The more acidic group, identified as the heme 6 propionic acid, has a pKa of 7.6±0.2 in BjFixLH and 6.8±0.2 in SmFixLH. The second ionization is due to formation of hydroxy-FixLH with pKa values of 9.64±0.05 for BjFixLH and 9.61±0.05 for SmFixLH. Imidazole binding is limited by the rate of heme pocket opening with maximum observed values of 680 and 1270s(-1) for BjFixLH and SmFixLH, respectively.


Assuntos
Proteínas de Bactérias/química , Bradyrhizobium/metabolismo , Cianetos/química , Hemeproteínas/química , Nitroimidazóis/química , Sinorhizobium meliloti/metabolismo , Heme/química , Histidina Quinase , Concentração de Íons de Hidrogênio , Ferro/química , Cinética , Ligantes , Mutação Puntual , Ligação Proteica , Domínios Proteicos
2.
Libyan J Med ; 9(1): 25451, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25292217

RESUMO

Mobile phones contaminated with bacteria may act as fomites. Antibiotic resistant bacterial contamination of mobile phones of inpatients was studied. One hundred and six samples were collected from mobile phones of patients admitted in various hospitals in Jazan province of Saudi Arabia. Eighty-nine (83.9%) out of 106 mobile phones were found to be contaminated with bacteria. Fifty-two (49.0%) coagulase-negative Staphylococcus, 12 (11.3%) Staphylococcus aureus, 7 (6.6%) Enterobacter cloacae, 3 (2.83%) Pseudomonas stutzeri, 3 (2.83%) Sphingomonas paucimobilis, 2 (1.8%) Enterococcus faecalis and 10 (9.4%) aerobic spore bearers were isolated. All the isolated bacteria were found to be resistant to various antibiotics. Hence, regular disinfection of mobile phones of hospital inpatients is advised.


Assuntos
Telefone Celular , Infecção Hospitalar/prevenção & controle , Farmacorresistência Bacteriana , Enterococcus faecium/isolamento & purificação , Desinfecção das Mãos/normas , Hospitais , Controle de Infecções/normas , Staphylococcus aureus/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Infecção Hospitalar/epidemiologia , Humanos , Educação de Pacientes como Assunto , Prevalência , Arábia Saudita/epidemiologia
3.
BMC Biochem ; 14: 19, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23895311

RESUMO

BACKGROUND: The cytochrome P450s are monooxygenases that insert oxygen functionalities into a wide variety of organic substrates with high selectivity. There is interest in developing efficient catalysts based on the "peroxide shunt" pathway in the cytochrome P450s, which uses H2O2 in place of O2/NADPH as the oxygenation agent. We report on our initial studies using cytochrome c peroxidase (CcP) as a platform to develop specific "peroxygenation" catalysts. RESULTS: The peroxygenase activity of CcP was investigated using 1-methoxynaphthalene as substrate. 1-Methoxynaphthalene hydroxylation was monitored using Russig's blue formation at standard reaction conditions of 0.50 mM 1-methoxynaphthalene, 1.00 mM H2O2, pH 7.0, 25°C. Wild-type CcP catalyzes the hydroxylation of 1-methoxynaphthalene with a turnover number of 0.0044 ± 0.0001 min-1. Three apolar distal heme pocket mutants of CcP were designed to enhance binding of 1-methoxynaphthalene near the heme, constructed, and tested for hydroxylation activity. The highest activity was observed for CcP(triAla), a triple mutant with Arg48, Trp51, and His52 simultaneously mutated to alanine residues. The turnover number of CcP(triAla) is 0.150 ± 0.008 min-1, 34-fold greater than wild-type CcP and comparable to the naphthalene hydroxylation activity of rat liver microsomal cytochrome P450. While wild-type CcP is very stable to oxidative degradation by excess hydrogen peroxide, CcP(triAla) is inactivated within four cycles of the peroxygenase reaction. CONCLUSIONS: Protein engineering of CcP can increase the rate of peroxygenation of apolar substrates but the initial constructs are more susceptible to oxidative degradation than wild-type enzyme. Further developments will require constructs with increased rates and selectivity while maintaining the stability of wild-type CcP toward oxidative degradation by hydrogen peroxide.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Citocromo-c Peroxidase/genética , Citocromo-c Peroxidase/metabolismo , Heme/metabolismo , Naftalenos/metabolismo , Animais , Citocromo-c Peroxidase/química , Heme/química , Hidroxilação , Cinética , Microssomos Hepáticos/enzimologia , Mutagênese Sítio-Dirigida , Naftalenos/química , Engenharia de Proteínas , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
4.
Biochim Biophys Acta ; 1834(1): 137-48, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23022490

RESUMO

Three yeast cytochrome c peroxidase (CcP) variants with apolar distal heme pockets have been constructed. The CcP variants have Arg48, Trp51, and His52 mutated to either all alanines, CcP(triAla), all valines, CcP(triVal), or all leucines, CcP(triLeu). The triple mutants have detectable enzymatic activity at pH 6 but the activity is less than 0.02% that of wild-type CcP. The activity loss is primarily due to the decreased rate of reaction between the triple mutants and H(2)O(2) compared to wild-type CcP. Spectroscopic properties and cyanide binding characteristics of the triple mutants have been investigated over the pH stability region of CcP, pH 4 to 8. The absorption spectra indicate that the CcP triple mutants have hemes that are predominantly five-coordinate, high-spin at pH 5 and six-coordinate, low-spin at pH 8. Cyanide binding to the triple mutants is biphasic indicating that the triple mutants have two slowly-exchanging conformational states with different cyanide affinities. The binding affinity for cyanide is reduced at least two orders of magnitude in the triple mutants compared to wild-type CcP and the rate of cyanide binding is reduced by four to five orders of magnitude. Correlation of the reaction rates of CcP and 12 distal pocket mutants with H(2)O(2) and HCN suggests that both reactions require ionization of the reactants within the distal heme pocket allowing the anion to bind the heme iron. Distal pocket features that promote substrate ionization (basic residues involved in base-catalyzed substrate ionization or polar residues that can stabilize substrate anions) increase the overall rate of reaction with H(2)O(2) and HCN while features that inhibit substrate ionization slow the reactions.


Assuntos
Cianetos/química , Citocromo-c Peroxidase/química , Peróxido de Hidrogênio/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Sítios de Ligação , Cianetos/metabolismo , Citocromo-c Peroxidase/genética , Citocromo-c Peroxidase/metabolismo , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Mutação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectrometria de Fluorescência
5.
Biochemistry ; 47(39): 10458-70, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18771281

RESUMO

The spectrum of the ferric heme domain of the direct oxygen sensor protein from Escherichia coli ( EcDosH) has been measured between pH 3.0 and 12.6. EcDosH undergoes acid denaturation with an apparent p K a of 4.24 +/- 0.05 and a Hill coefficient of 3.1 +/- 0.6 and reversible alkaline denaturation with a p K a of 9.86 +/- 0.04 and a Hill coefficient of 1.1 +/- 0.1. Cyanide binding to EcDosH has been investigated between pH 4 and 11. The EcDosH-cyanide complex is most stable at pH 9 with a K D of 0.29 +/- 0.06 microM. The kinetics of cyanide binding are monophasic between pH 4 and 8. At pH >or=8.5, the reaction is biphasic with the fast phase dependent upon the cyanide concentration and the slow phase independent of cyanide. The slow phase is attributed to conversion of denatured EcDosH to the native state, with a pH-independent rate of 0.052 +/- 0.006 s (-1). The apparent association rate constant for cyanide binding to EcDosH increases from 3.6 +/- 0.1 M (-1) s (-1) at pH 4 to 520 +/- 20 M (-1) s (-1) at pH 11. The dissociation rate constant averages (8.6 +/- 1.3) x 10 (-5) s (-1) between pH 5 and 9, increasing to (1.4 +/- 0.1) x 10 (-3) s (-1) at pH 4 and (2.5 +/- 0.1) x 10 (-3) s (-1) at pH 12.2. The mechanism of cyanide binding is consistent with preferential binding of the cyanide anion to native EcDosH. The reactions of imidazole and H 2O 2 with ferric EcDosH were also investigated and show little reactivity.


Assuntos
Proteínas de Transporte/metabolismo , Cianetos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Heme/metabolismo , Hemeproteínas/metabolismo , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/genética , Dicroísmo Circular , Clonagem Molecular , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Hemeproteínas/química , Hemeproteínas/genética , Concentração de Íons de Hidrogênio , Cinética , Desnaturação Proteica
6.
Biochemistry ; 47(6): 1540-53, 2008 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-18201102

RESUMO

Several recombinant Bradyrhizobium japonicum FixL heme domains (BjFixLH) have been characterized and their temporal mass stabilities assessed by MALDI-TOF mass spectrometry. The intact heme domains all bound heme and gave normal UV-visible spectra, indicating that they were correctly assembled. Proteins produced at Washington State University included a parent 131-amino acid "full-length heme domain" (FLHD) of primary sequence T140-Q270 (BjFixLH140-270), a histidine-tagged analogue containing an N-terminal extension, and five different terminus-truncated variants. The smallest of these was a 106-amino acid "core PAS heme domain" with primary sequence T151-L256. All variants except for the smallest exhibited significant mass instability, assessed by MALDI-TOF mass spectrometry, that was apparent within 1-16 days standing in a sterile environment at room temperature. Two full-length heme domains expressed independently in geographically remote laboratories (Northern Illinois University and JILA, University of Colorado) also exhibited this mass instability. A mass loss of as much as approximately 25% of the starting mass has been observed, which could explain the "missing" terminal amino acids in published crystal structures. This work documents the phenomenon and its persistence despite (i) sample sterilization, (ii) protease inhibitors, (iii) primary sequence variations, (iv) the presence or absence of ferriheme ligands, and (v) the presence or absence of O2.


Assuntos
Proteínas de Bactérias/química , Bradyrhizobium/química , Heme/química , Hemeproteínas/química , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Histidina Quinase , Dados de Sequência Molecular , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA