Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(16)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806667

RESUMO

In the military, police, security companies, and shooting sports, precision shooting training is of the outmost importance. In order to achieve high shooting accuracy, a lot of training is needed. As a result, trainees use a large number of cartridges and a considerable amount of time of professional trainers, which can cost a lot. Our motivation is to reduce costs and shorten training time by introducing an augmented biofeedback system based on machine learning techniques. We are designing a system that can detect and provide feedback on three types of errors that regularly occur during a precision shooting practice: excessive hand movement error, aiming error and triggering error. The system is designed to provide concurrent feedback on the hand movement error and terminal feedback on the other two errors. Machine learning techniques are used innovatively to identify hand movement errors; the other two errors are identified by the threshold approach. To correct the excessive hand movement error, a precision shot accuracy prediction model based on Random Forest has proven to be the most suitable. The experimental results show that: (1) the proposed Random Forest (RF) model achieves the prediction accuracy of 91.27%, higher than any of the other reference models, and (2) hand movement is strongly related to the accuracy of precision shooting. Appropriate use of the proposed augmented biofeedback system will result in a lower number of rounds used and shorten the precision shooting training process.


Assuntos
Retroalimentação , Modelos Estatísticos , Esportes , Biorretroalimentação Psicológica , Aprendizado de Máquina , Movimento
2.
Sci Rep ; 8(1): 16711, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420636

RESUMO

Three-dimensional (3D) reconstruction of a single protein molecule is essential for understanding the relationship between the structural dynamics and functions of the protein. Electron tomography (ET) provides a tool for imaging an individual particle of protein from a series of tilted angles. Individual-particle electron tomography (IPET) provides an approach for reconstructing a 3D density map from a single targeted protein particle (without averaging from different particles of this type of protein), in which the target particle was imaged from a series of tilting angles. However, owing to radiation damage limitations, low-dose images (high noise, and low image contrast) are often challenging to be aligned for 3D reconstruction at intermediate resolution (1-3 nm). Here, we propose a computational method to enhance the image contrast, without increasing any experimental dose, for IPET 3D reconstruction. Using an edge-preserving smoothing-based multi-scale image decomposition algorithm, this method can detect the object against a high-noise background and enhance the object image contrast without increasing the noise level or significantly decreasing the image resolution. The method was validated by using both negative staining (NS) ET and cryo-ET images. The successful 3D reconstruction of a small molecule (<100 kDa) indicated that this method can be used as a supporting tool to current ET 3D reconstruction methods for studying protein dynamics via structure determination from each individual particle of the same type of protein.


Assuntos
Tomografia com Microscopia Eletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Microscopia Crioeletrônica , Imageamento Tridimensional
3.
Sensors (Basel) ; 17(5)2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28467370

RESUMO

As a promising paradigm, mobile crowdsensing exerts the potential of widespread sensors embedded in mobile devices. The greedy nature of workers brings the problem of low-quality sensing data, which poses threats to the overall performance of a crowdsensing system. Existing works often tackle this problem with additional function components. In this paper, we systematically formulate the problem into a crowdsensing interaction process between a requestor and a worker, which can be modeled by two types of iterated games with different strategy spaces. Considering that the low-quality data submitted by the workers can reduce the requestor's payoff and further decrease the global income, we turn to controlling the social welfare in the games. To that aim, we take advantage of zero-determinant strategy, based on which we propose two social welfare control mechanisms under both game models. Specifically, we consider the requestor as the controller of the games and, with proper parameter settings for the to-be-adopted zero-determinant strategy, social welfare can be optimized to the desired level no matter what strategy the worker adopts. Simulation results demonstrate that the requestor can achieve the maximized social welfare and keep it stable by using our proposed mechanisms.

4.
Sci Rep ; 7: 45602, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28422088

RESUMO

Clustering is an unsupervised approach to classify elements based on their similarity, and it is used to find the intrinsic patterns of data. There are enormous applications of clustering in bioinformatics, pattern recognition, and astronomy. This paper presents a clustering approach based on the idea that density wise single or multiple connected regions make a cluster, in which density maxima point represents the center of the corresponding density region. More precisely, our approach firstly finds the local density regions and subsequently merges the density connected regions to form the meaningful clusters. This idea empowers the clustering procedure, in which outliers are automatically detected, higher dense regions are intuitively determined and merged to form clusters of arbitrary shape, and clusters are identified regardless the dimensionality of space in which they are embedded. Extensive experiments are performed on several complex data sets to analyze and compare our approach with the state-of-the-art clustering methods. In addition, we benchmarked the algorithm on gene expression microarray data sets for cancer subtyping; to distinguish normal tissues from tumor; and to classify multiple tissue data sets.


Assuntos
Análise por Conglomerados , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Análise em Microsséries/métodos
5.
Sensors (Basel) ; 17(2)2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-28208593

RESUMO

In a context sensing system in which a sensor-equipped mobile phone runs an unreliable context-aware application, the application can infer the user's contexts, based on which it provides personalized services. However, the application may sell the user's contexts to some malicious adversaries to earn extra profits, which will hinder its widespread use. In the real world, the actions of the user, the application and the adversary in the context sensing system affect each other, so that their payoffs are constrained mutually. To figure out under which conditions they behave well (the user releases, the application does not leak and the adversary does not retrieve the context), we take advantage of game theory to analyze the context sensing system. We use the extensive form game and the repeated game, respectively, to analyze two typical scenarios, single interaction and multiple interaction among three players, from which Nash equilibriums and cooperation conditions are obtained. Our results show that the reputation mechanism for the context-sensing system in the former scenario is crucial to privacy preservation, so is the extent to which the participants are concerned about future payoffs in the latter one.

6.
J Med Syst ; 40(7): 168, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27234479

RESUMO

Due to the high mortality associated with heart disease, there is an urgent demand for advanced detection of abnormal heart beats. The use of dynamic electrocardiogram (DCG) provides a useful indicator of heart condition from long-term monitoring techniques commonly used in the clinic. However, accurately distinguishing sparse abnormal heart beats from large DCG data sets remains difficult. Herein, we propose an efficient fine solution based on 11 geometrical features of the DCG PQRST(P-T) waves and an improved hierarchical clustering method for arrhythmia detection. Data sets selected from MIT-BIH are used to validate the effectiveness of this approach. Experimental results show that the detection procedure of arrhythmia is fast and with accurate clustering.


Assuntos
Arritmias Cardíacas/diagnóstico , Eletrocardiografia Ambulatorial/métodos , Processamento de Sinais Assistido por Computador , Máquina de Vetores de Suporte , Algoritmos , Humanos
7.
JMIR Mhealth Uhealth ; 1(2): e20, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-25098861

RESUMO

BACKGROUND: In recent years, cerebrovascular disease has been the leading cause of death and adult disability in the world. This study describes an efficient approach to detect cerebrovascular disease. OBJECTIVE: In order to improve cerebrovascular treatment, prevention, and care, an automatic cerebrovascular disease detection eHealth platform is designed and studied. METHODS: We designed an automatic eHealth platform for cerebrovascular disease detection with a four-level architecture: object control layer, data transmission layer, service supporting layer, and application service layer. The platform has eight main functions: cerebrovascular database management, preprocessing of cerebral image data, image viewing and adjustment model, image cropping compression and measurement, cerebrovascular segmentation, 3-dimensional cerebrovascular reconstruction, cerebrovascular rendering, cerebrovascular virtual endoscope, and automatic detection. Several key technologies were employed for the implementation of the platform. The anisotropic diffusion model was used to reduce the noise. Statistics segmentation with Gaussian-Markov random field model (G-MRF) and Stochastic Estimation Maximization (SEM) parameter estimation method were used to realize the cerebrovascular segmentation. Ball B-Spline curve was proposed to model the cerebral blood vessels. Compute unified device architecture (CUDA) based on ray-casting volume rendering presented by curvature enhancement and boundary enhancement were used to realize the volume rendering model. We implemented the platform with a network client and mobile phone client to fit different users. RESULTS: The implemented platform is running on a common personal computer. Experiments on 32 patients' brain computed tomography data or brain magnetic resonance imaging data stored in the system verified the feasibility and validity of each model we proposed. The platform is partly used in the cranial nerve surgery of the First Hospital Affiliated to the General Hospital of People's Liberation Army and radiology of Beijing Navy General Hospital. At the same time it also gets some applications in medical imaging specialty teaching of Tianjin Medical University. The application results have also been validated by our neurosurgeon and radiologist. CONCLUSIONS: The platform appears beneficial in diagnosis of the cerebrovascular disease. The long-term benefits and additional applications of this technology warrant further study. The research built a diagnosis and treatment platform of the human tissue with complex geometry and topology such as brain vessel based on the Internet of things.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...