Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cell Signal ; 28(9): 1325-1335, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27224507

RESUMO

Colony stimulating factor-1 receptor (CSF-1R), a receptor tyrosine kinase (RTK), is the master regulator of macrophage biology. CSF-1 can bind CSF-1R resulting in receptor activation and signalling essential for macrophage functions such as proliferation, differentiation, survival, polarization, phagocytosis, cytokine secretion, and motility. CSF-1R activation can only occur after the receptor is presented on the macrophage cell surface. This process is reliant upon the underlying macrophage receptor trafficking machinery. However, the mechanistic details governing this process are incompletely understood. C-terminal Eps15 Homology Domain-containing (EHD) proteins have recently emerged as key regulators of receptor trafficking but have not yet been studied in the context of macrophage CSF-1R signalling. In this manuscript, we utilize primary bone-marrow derived macrophages (BMDMs) to reveal a novel function of EHD1 as a regulator of CSF-1R abundance on the cell surface. We report that EHD1-knockout (EHD1-KO) macrophages cell surface and total CSF-1R levels are significantly decreased. The decline in CSF-1R levels corresponds with reduced downstream macrophage functions such as cell proliferation, migration, and spreading. In EHD1-KO macrophages, transport of newly synthesized CSF-1R to the macrophage cell surface was reduced and was associated with the shunting of the receptor to the lysosome, which resulted in receptor degradation. These findings reveal a novel and functionally important role for EHD1 in governing CSF-1R signalling via regulation of anterograde transport of CSF-1R to the macrophage cell surface.


Assuntos
Membrana Celular/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Transdução de Sinais , Proteínas de Transporte Vesicular/metabolismo , Animais , Autoantígenos/metabolismo , Compartimento Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Macrolídeos/farmacologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Biossíntese de Proteínas/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
3.
World J Clin Oncol ; 5(5): 806-23, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25493220

RESUMO

Epidermal growth factor receptor (EGFR) controls a wide range of cellular processes, and aberrant EGFR signaling as a result of receptor overexpression and/or mutation occurs in many types of cancer. Tumor cells in non-small cell lung cancer (NSCLC) patients that harbor EGFR kinase domain mutations exhibit oncogene addiction to mutant EGFR, which confers high sensitivity to tyrosine kinase inhibitors (TKIs). As patients invariably develop resistance to TKIs, it is important to delineate the cell biological basis of mutant EGFR-induced cellular transformation since components of these pathways can serve as alternate therapeutic targets to preempt or overcome resistance. NSCLC-associated EGFR mutants are constitutively-active and induce ligand-independent transformation in nonmalignant cell lines. Emerging data suggest that a number of factors are critical for the mutant EGFR-dependent tumorigenicity, and bypassing the effects of TKIs on these pathways promotes drug resistance. For example, activation of downstream pathways such as Akt, Erk, STAT3 and Src is critical for mutant EGFR-mediated biological processes. It is now well-established that the potency and spatiotemporal features of cellular signaling by receptor tyrosine kinases such as EGFR, as well as the specific pathways activated, is determined by the nature of endocytic traffic pathways through which the active receptors traverse. Recent evidence indicates that NSCLC-associated mutant EGFRs exhibit altered endocytic trafficking and they exhibit reduced Cbl ubiquitin ligase-mediated lysosomal downregulation. More recent work has shown that mutant EGFRs undergo ligand-independent traffic into the endocytic recycling compartment, a behavior that plays a key role in Src pathway activation and oncogenesis. These studies are beginning to delineate the close nexus between signaling and endocytic traffic of EGFR mutants as a key driver of oncogenic processes. Therefore, in this review, we will discuss the links between mutant EGFR signaling and endocytic properties, and introduce potential mechanisms by which altered endocytic properties of mutant EGFRs may alter signaling and vice versa as well as their implications for NSCLC therapy.

4.
J Biol Chem ; 289(44): 30443-30458, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25225290

RESUMO

ErbB2 overexpression drives oncogenesis in 20-30% cases of breast cancer. Oncogenic potential of ErbB2 is linked to inefficient endocytic traffic into lysosomes and preferential recycling. However, regulation of ErbB2 recycling is incompletely understood. We used a high-content immunofluorescence imaging-based kinase inhibitor screen on SKBR-3 breast cancer cells to identify kinases whose inhibition alters the clearance of cell surface ErbB2 induced by Hsp90 inhibitor 17-AAG. Less ErbB2 clearance was observed with broad-spectrum PKC inhibitor Ro 31-8220. A similar effect was observed with Go 6976, a selective inhibitor of classical Ca(2+)-dependent PKCs (α, ß1, ßII, and γ). PKC activation by PMA promoted surface ErbB2 clearance but without degradation, and ErbB2 was observed to move into a juxtanuclear compartment where it colocalized with PKC-α and PKC-δ together with the endocytic recycling regulator Arf6. PKC-α knockdown impaired the juxtanuclear localization of ErbB2. ErbB2 transit to the recycling compartment was also impaired upon PKC-δ knockdown. PMA-induced Erk phosphorylation was reduced by ErbB2 inhibitor lapatinib, as well as by knockdown of PKC-δ but not that of PKC-α. Our results suggest that activation of PKC-α and -δ mediates a novel positive feedback loop by promoting ErbB2 entry into the endocytic recycling compartment, consistent with reported positive roles for these PKCs in ErbB2-mediated tumorigenesis. As the endocytic recycling compartment/pericentrion has emerged as a PKC-dependent signaling hub for G-protein-coupled receptors, our findings raise the possibility that oncogenesis by ErbB2 involves previously unexplored PKC-dependent endosomal signaling.


Assuntos
Antineoplásicos/farmacologia , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-delta/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-2/metabolismo , Benzoquinonas/farmacologia , Neoplasias da Mama , Carbazóis/farmacologia , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Endocitose/efeitos dos fármacos , Endossomos/metabolismo , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Retroalimentação Fisiológica , Feminino , Humanos , Indóis/farmacologia , Lactamas Macrocíclicas/farmacologia , Sistema de Sinalização das MAP Quinases , Fosforilação , Proteína Quinase C-alfa/antagonistas & inibidores , Proteína Quinase C-delta/antagonistas & inibidores , Processamento de Proteína Pós-Traducional , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...