Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 17(39): 26130-9, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26377149

RESUMO

Fully understanding the effect and the molecular mechanisms of plasma damage and silylation repair on low dielectric constant (low-k) materials is essential to the design of low-k dielectrics with defined properties and the integration of low-k dielectrics into advanced interconnects of modern electronics. Here, analytical techniques including sum frequency generation vibrational spectroscopy (SFG), Fourier transform infrared spectroscopy (FTIR), contact angle goniometry (CA) and X-ray photoelectron spectroscopy (XPS) have been employed to provide a comprehensive characterization of the surface and bulk structure changes of poly(methyl)silsesquioxane (PMSQ) low-k thin films before and after O2 plasma treatment and silylation repair. O2 plasma treatment altered drastically both the molecular structures and water structures at the surfaces of the PMSQ film while no bulk structural change was detected. For example, ∼34% Si-CH3 groups were removed from the PMSQ surface, and the Si-CH3 groups at the film surface tilted toward the surface after the O2 plasma treatment. The oxidation by the O2 plasma made the PMSQ film surface more hydrophilic and thus enhanced the water adsorption at the film surface. Both strongly and weakly hydrogen bonded water were detected at the plasma-damaged film surface during exposure to water with the former being the dominate component. It is postulated that this enhancement of both chemisorbed and physisorbed water after the O2 plasma treatment leads to the degradation of low-k properties and reliability. The degradation of the PMSQ low-k film can be recovered by repairing the plasma-damaged surface using a silylation reaction. The silylation method, however, cannot fully recover the plasma induced damage at the PMSQ film surface as evidenced by the existence of hydrophilic groups, including C-O/C[double bond, length as m-dash]O and residual Si-OH groups. This work provides a molecular level picture on the surface structural changes of low-k materials after plasma treatment and the subsequent silylation repair.

2.
ACS Appl Mater Interfaces ; 6(21): 18951-61, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25313691

RESUMO

Water adsorption in porous low-k dielectrics has become a significant challenge for both back-end-of-line integration and reliability. A simple method is proposed here to achieve in situ observation of water structure and water-induced structure changes at the poly(methyl silsesquioxane) (PMSQ) surface and the PMSQ/solid buried interface at the molecular level by combining sum frequency generation (SFG) vibrational spectroscopic and Fourier transform infrared (FTIR) spectroscopic studies. First, in situ SFG investigations of water uptake were performed to provide direct evidence that water diffuses predominantly along the PMSQ/solid interface rather than through the bulk. Furthermore, SFG experiments were conducted at the PMSQ/water interface to simulate water behavior at the pore inner surfaces for porous low-k materials. Water molecules were found to form strong hydrogen bonds at the PMSQ surface, while weak hydrogen bonding was observed in the bulk. However, both strongly and weakly hydrogen bonded water components were detected at the PMSQ/SiO2 buried interface. This suggests that the water structures at PMSQ/solid buried interfaces are also affected by the nature of solid substrate. Moreover, the orientation of the Si-CH3 groups at the buried interface was permanently changed by water adsorption, which might due to low flexibility of Si-CH3 groups at the buried interface. In brief, this study provides direct evidence that water molecules tend to strongly bond (chemisorbed) with low-k dielectric at pore inner surfaces and at the low-k/solid interface of porous low-k dielectrics. Therefore, water components at the surfaces, rather than the bulk, are likely more responsible for chemisorbed water related degradation of the interconnection layer. Although the method developed here was based on a model system study, we believe it should be applicable to a wide variety of low-k materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...