Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Eur J Med Res ; 4(9): 357-60, 1999 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-10477499

RESUMO

Unloading of weight bearing bones as induced by microgravity or immobilization has significant impacts on the calcium and bone metabolism and is the most likely cause for space osteoporosis. During a 4.5 to 6 month stay in space most of the astronauts develop a reduction in bone mineral density in spine, femoral neck, trochanter, and pelvis of 1%-1.6% measured by Dual Energy X-ray Absorption (DEXA). Dependent on the mission length and the individual turnover rates of the astronauts it can even reach individual losses of up to 14% in the femoral neck. Osteoporosis itself is defined as the deterioration of bone tissue leading to enhanced bone fragility and to a consequent increase in fracture risk. Thinking of long-term missions to Mars or interplanetary missions for years, space osteoporosis is one of the major concerns for manned spaceflight. However, decrease in bone density can be initiated differently. It either can be caused by increases in bone formation and bone resorption resulting in a net bone loss, as obtained in fast looser postmenopausal osteoporosis. On the other hand decrease in bone formation and increase in bone resorption also leads to bone losses as obtained in slow looser postmenopausal osteoporosis or in Anorexia Nervosa patients. Biomarkers of bone turnover measured during several missions indicated that the pattern of space osteoporosis is very similar to the pattern of Anorexia Nervosa patients or slow looser postmenopausal osteoporosis. However, beside unloading, other risk factors for space osteoporosis exist such as stress, nutrition, fluid shifts, dehydration and bone perfusion. Especially nutritional factors may contribute considerably to the development of osteoporosis. From earthbound studies it is known that calcium supplementation in women and men can prevent bone loss of 1% bone per year. Based on these results we studied the calcium intake during several European missions and performed an experiment during the German MIR 97 mission where we investigated the effects of high calcium intake (>1000 mg/d) and vitamin D supplementation (650 IU/d) on the calcium and bone metabolism during 21 days in microgravity. In the MIR 97 mission high calcium intake and vitamin D supplementation led to high ionized calcium levels and a marked decrease in calcitriol levels together with decreased bone formation and increased bone resorption markers. Our conclusion from the MIR 97 mission is that an adequate calcium intake and vitamin D supplementation during space missions is mandatory but, in contrast to terrestrial conditions, does not efficiently counteract the development of space osteoporosis.


Assuntos
Osso e Ossos/metabolismo , Cálcio/metabolismo , Ausência de Peso/efeitos adversos , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...