Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(21)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34769298

RESUMO

Streptomyces bacteria produce a plethora of secondary metabolites including the majority of medically important antibiotics. The onset of secondary metabolism is correlated with morphological differentiation and controlled by a complex regulatory network involving numerous regulatory proteins. Control over these pathways at the molecular level has a medical and industrial importance. Here we describe a GntR-like DNA binding transcription factor SCO3932, encoded within an actinomycete integrative and conjugative element, which is involved in the secondary metabolite biosynthesis regulation. Affinity chromatography, electrophoresis mobility shift assay, footprinting and chromatin immunoprecipitation experiments revealed, both in vitro and in vivo, SCO3932 binding capability to its own promoter region shared with the neighboring gene SCO3933, as well as promoters of polyketide metabolite genes, such as cpkD, a coelimycin biosynthetic gene, and actII-orf4-an activator of actinorhodin biosynthesis. Increased activity of SCO3932 target promoters, as a result of SCO3932 overproduction, indicates an activatory role of this protein in Streptomyces coelicolor A3(2) metabolite synthesis pathways.


Assuntos
Actinobacteria/genética , Vias Biossintéticas , Streptomyces/crescimento & desenvolvimento , Fatores de Transcrição/genética , Proteínas de Bactérias/genética , Imunoprecipitação da Cromatina , Cromatografia de Afinidade , Clonagem Molecular , Ensaio de Desvio de Mobilidade Eletroforética , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Metabolismo Secundário , Streptomyces/genética
2.
Microb Cell Fact ; 16(1): 144, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28818103

RESUMO

BACKGROUND: In recent years the production of biobased biodegradable plastics has been of interest of researchers partly due to the accumulation of non-biodegradable plastics in the environment and to the opportunity for new applications. Commonly investigated are the polyhydroxyalkanoates (PHAs) poly(hydroxybutyrate) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHB-V). The latter has the advantage of being tougher and less brittle. The production of these polymers in bacteria is well established but production in yeast may have some advantages, e.g. the ability to use a broad spectrum of industrial by-products as a carbon sources. RESULTS: In this study we increased the synthesis of PHB-V in the non-conventional yeast Arxula adeninivorans by stabilization of polymer accumulation via genetic modification and optimization of culture conditions. An A. adeninivorans strain with overexpressed PHA pathway genes for ß-ketothiolase, acetoacetyl-CoA reductase, PHAs synthase and the phasin gene was able to accumulate an unexpectedly high level of polymer. It was found that an optimized strain cultivated in a shaking incubator is able to produce up to 52.1% of the DCW of PHB-V (10.8 g L-1) with 12.3%mol of PHV fraction. Although further optimization of cultivation conditions in a fed-batch bioreactor led to lower polymer content (15.3% of the DCW of PHB-V), the PHV fraction and total polymer level increased to 23.1%mol and 11.6 g L-1 respectively. Additionally, analysis of the product revealed that the polymer has a very low average molecular mass and unexpected melting and glass transition temperatures. CONCLUSIONS: This study indicates a potential of use for the non-conventional yeast, A. adeninivorans, as an efficient producer of polyhydroxyalkanoates.


Assuntos
Poliésteres/metabolismo , Saccharomycetales/metabolismo , Acetil-CoA C-Aciltransferase/genética , Acetil-CoA C-Aciltransferase/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Proteínas Fúngicas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Lectinas de Plantas/genética , Lectinas de Plantas/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Poliésteres/análise , Poliésteres/química , Saccharomycetales/enzimologia , Saccharomycetales/crescimento & desenvolvimento
3.
AMB Express ; 7(1): 4, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28050847

RESUMO

(R)-3-hydroxybutyric acid can be used in industrial and health applications. The synthesis pathway comprises two enzymes, ß-ketothiolase and acetoacetyl-CoA reductase which convert cytoplasmic acetyl-CoA to (R)-3-hydroxybutyric acid [(R)-3-HB] which is released into the culture medium. In the present study we used the non-conventional yeast, Arxula adeninivorans, for the synthesis enantiopure (R)-3-HB. To establish optimal production, we investigated three different endogenous yeast thiolases (Akat1p, Akat2p, Akat4p) and three bacterial thiolases (atoBp, thlp, phaAp) in combination with an enantiospecific reductase (phaBp) from Cupriavidus necator H16 and endogenous yeast reductases (Atpk2p, Afox2p). We found that Arxula is able to release (R)-3-HB used an existing secretion system negating the need to engineer membrane transport. Overexpression of thl and phaB genes in organisms cultured in a shaking flask resulted in 4.84 g L-1 (R)-3-HB, at a rate of 0.023 g L-1 h-1 over 214 h. Fed-batch culturing with glucose as a carbon source did not improve the yield, but a similar level was reached with a shorter incubation period [3.78 g L-1 of (R)-3-HB at 89 h] and the rate of production was doubled to 0.043 g L-1 h-1 which is higher than any levels in yeast reported to date. The secreted (R)-3-HB was 99.9% pure. This is the first evidence of enantiopure (R)-3-HB synthesis using yeast as a production host and glucose as a carbon source.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...