Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 106(7): 2541-2555, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35325274

RESUMO

While crude glycerol is a cheap carbon source for industrial-scale cultivation of microorganisms, its application relies on fast growth and conversion. The biopolymer producing Cupriavidus necator H16 (synonym: Ralstonia eutropha H16) grows poorly on glycerol. The heterologous expression of glycerol facilitator glpF, glycerol kinase glpK, and glycerol dehydrogenase glpD from E. coli accelerated the growth considerably. The naturally occurring glycerol utilization is inhibited by low glycerol kinase activity. A limited heterotrophic growth promotes the dependency on autotrophic growth by carbon dioxide (CO2) fixation and refixation. As mixotrophic growth occurs in the wildtype due to low consumption rates of glycerol, CO2 fixation by the Calvin-Benson-Bassham (CBB) cycle is essential. The deletion of both cbbX copies encoding putative RuBisCO-activases (AAA + ATPase) resulted in a sharp slowdown of growth and glycerol consumption. Activase activity is necessary for functioning carboxylation by RuBisCO. Each of the two copies compensates for the loss of the other, as suggested by observed expression levels. The strong tendency towards autotrophy supports previous investigations of glycerol growth and emphasizes the versatility of the metabolism of C. necator H16. Mixotrophy with glycerol-utilization and CO2 fixation with a high dependence on the CBB is automatically occurring unless transportation and degradation of glycerol are optimized. Parallel engineering of CO2 fixation and glycerol degradation is suggested towards application for value-added production from crude glycerol. KEY POINTS: • Growth on glycerol is highly dependent on efficient carbon fixation via CBB cycle. • CbbX is essential for the efficiency of RuBisCO in C. necator H16. • Expression of glycerol degradation pathway enzymes accelerates glycerol utilization.


Assuntos
Aquaporinas , Cupriavidus necator , Proteínas de Escherichia coli , Aquaporinas/metabolismo , Dióxido de Carbono/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Glicerol/metabolismo , Glicerol Quinase/genética , Glicerol Quinase/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo
2.
Appl Environ Microbiol ; 88(2): e0187321, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34731045

RESUMO

Many homologous genes encoding ß-oxidation enzymes have been found in the genome of Cupriavidus necator H16 (synonym Ralstonia eutropha H16). By proteome analysis, the degradation of adipic acid was investigated and showed differences from the degradation of hexanoic acid. During ß-oxidation of adipic acid, activation with coenzyme A (CoA) is catalyzed by the two-subunit acyl-CoA ligase encoded by B0198 and B0199. The operon is completed by B0200 encoding a thiolase catalyzing the cleavage of acetyl-CoA at the end of the ß-oxidation cycle. C. necator ΔB0198-B0200 strain showed improved growth on adipic acid. Potential substitutes are B1239 for B0198-B0199 and A0170 as well as A1445 for B0200. A deletion mutant without all three thiolases showed diminished growth. The deletion of detected acyl-CoA dehydrogenase encoded by B2555 has an altered phenotype grown with sebacic acid but not adipic acid. With hexanoic acid, acyl-CoA dehydrogenase encoded by B0087 was detected on two-dimensional (2D) gels. Both enzymes are active with adipoyl-CoA and hexanoyl-CoA as substrates, but specific activity indicates a higher activity of B2555 with adipoyl-CoA. 2D gels, growth experiments, and enzyme assays suggest the specific expression of B2555 for the degradation of dicarboxylic acids. In C. necator H16, the degradation of carboxylic acids potentially changes with an increasing chain length. Two operons involved in growth with long-chain fatty acids seem to be replaced during growth on medium-chain carboxylic acids. Only two deletion mutants showed diminished growth. Replacement of deleted genes with one of the numerous homologous is likely. IMPORTANCE The biotechnologically interesting bacterium Cupriavidus necator H16 has been thoroughly investigated. Fifteen years ago, it was sequenced entirely and annotated (A. Pohlmann, W. F. Fricke, F. Reinecke, B. Kusian, et al., Nat Biotechnol 24:1257-1262, 2006, https://doi.org/10.1038/nbt1244). Nevertheless, the degradation of monocarboxylic fatty acids and dicarboxylic acids has not been elucidated completely. C. necator is used to produce value-added products from affordable substrates. One of our investigations' primary targets is the biotechnological production of organic acids with different and specific chain lengths. The versatile metabolism of carboxylic acids recommends C. necator H16 as a candidate for producing value-added organic products. Therefore, the metabolism of these compounds is of interest, and, for different applications in industry, understanding such central metabolic pathways is crucial.


Assuntos
Cupriavidus necator , Acetilcoenzima A/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cupriavidus necator/metabolismo , Ácidos Dicarboxílicos/metabolismo , Ácidos Graxos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...