Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Phys Rev E ; 107(5-2): 055105, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37329026

RESUMO

In many practical scenarios, a flying insect must search for the source of an emitted cue which is advected by the atmospheric wind. On the macroscopic scales of interest, turbulence tends to mix the cue into patches of relatively high concentration over a background of very low concentration, so that the insect will detect the cue only intermittently and cannot rely on chemotactic strategies which simply climb the concentration gradient. In this work we cast this search problem in the language of a partially observable Markov decision process and use the Perseus algorithm to compute strategies that are near-optimal with respect to the arrival time. We test the computed strategies on a large two-dimensional grid, present the resulting trajectories and arrival time statistics, and compare these to the corresponding results for several heuristic strategies, including (space-aware) infotaxis, Thompson sampling, and QMDP. We find that the near-optimal policy found by our implementation of Perseus outperforms all heuristics we test by several measures. We use the near-optimal policy to study how the search difficulty depends on the starting location. We also discuss the choice of initial belief and the robustness of the policies to changes in the environment. Finally, we present a detailed and pedagogical discussion about the implementation of the Perseus algorithm, including the benefits-and pitfalls-of employing a reward-shaping function.


Assuntos
Algoritmos , Olfato , Animais , Teorema de Bayes , Insetos , Políticas
3.
Phys Rev E ; 105(6-2): 065110, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35854520

RESUMO

At the molecular level fluid motions are, by first principles, described by time reversible laws. On the other hand, the coarse grained macroscopic evolution is suitably described by the Navier-Stokes equations, which are inherently irreversible, due to the dissipation term. Here, a reversible version of three-dimensional Navier-Stokes is studied, by introducing a fluctuating viscosity constructed in such a way that enstrophy is conserved, along the lines of the paradigm of microcanonical versus canonical treatment in equilibrium statistical mechanics. Through systematic simulations we attack two important questions: (a) What are the conditions that must be satisfied in order to have a statistical equivalence between the two nonequilibrium ensembles? (b) What is the empirical distribution of the fluctuating viscosity observed by changing the Reynolds number and the number of modes used in the discretization of the evolution equation? The latter point is important also to establish regularity conditions for the reversible equations. We find that the probability to observe negative values of the fluctuating viscosity becomes very quickly extremely small when increasing the effective Reynolds number of the flow in the fully resolved hydrodynamical regime, at difference from what was observed previously.

4.
Philos Trans A Math Phys Eng Sci ; 380(2219): 20210243, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35094557

RESUMO

We investigate numerically the model proposed in Sahoo et al. (2017 Phys. Rev. Lett. 118, 164501) where a parameter λ is introduced in the Navier-Stokes equations such that the weight of homochiral to heterochiral interactions is varied while preserving all original scaling symmetries and inviscid invariants. Decreasing the value of λ leads to a change in the direction of the energy cascade at a critical value [Formula: see text]. In this work, we perform numerical simulations at varying λ in the forward energy cascade range and at changing the Reynolds number [Formula: see text]. We show that for a fixed injection rate, as [Formula: see text], the kinetic energy diverges with a scaling law [Formula: see text]. The energy spectrum is shown to display a larger bottleneck as λ is decreased. The forward heterochiral flux and the inverse homochiral flux both increase in amplitude as [Formula: see text] is approached while keeping their difference fixed and equal to the injection rate. As a result, very close to [Formula: see text] a stationary state is reached where the two opposite fluxes are of much higher amplitude than the mean flux and large fluctuations are observed. Furthermore, we show that intermittency as [Formula: see text] is approached is reduced. The possibility of obtaining a statistical description of regular Navier-Stokes turbulence as an expansion around this newly found critical point is discussed. This article is part of the theme issue 'Scaling the turbulence edifice (part 2)'.

5.
Philos Trans A Math Phys Eng Sci ; 379(2208): 20200396, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34455841

RESUMO

We develop a multicomponent lattice Boltzmann (LB) model for the two-dimensional Rayleigh-Taylor turbulence with a Shan-Chen pseudopotential implemented on GPUs. In the immiscible case, this method is able to accurately overcome the inherent numerical complexity caused by the complicated structure of the interface that appears in the fully developed turbulent regime. The accuracy of the LB model is tested both for early and late stages of instability. For the developed turbulent motion, we analyse the balance between different terms describing variations of the kinetic and potential energies. Then we analyse the role of the interface in the energy balance and also the effects of the vorticity induced by the interface in the energy dissipation. Statistical properties are compared for miscible and immiscible flows. Our results can also be considered as a first validation step to extend the application of LB model to three-dimensional immiscible Rayleigh-Taylor turbulence. This article is part of the theme issue 'Progress in mesoscale methods for fluid dynamics simulation'.

6.
Chaos ; 29(10): 103138, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31675828

RESUMO

To find the path that minimizes the time to navigate between two given points in a fluid flow is known as Zermelo's problem. Here, we investigate it by using a Reinforcement Learning (RL) approach for the case of a vessel that has a slip velocity with fixed intensity, Vs, but variable direction and navigating in a 2D turbulent sea. We show that an Actor-Critic RL algorithm is able to find quasioptimal solutions for both time-independent and chaotically evolving flow configurations. For the frozen case, we also compared the results with strategies obtained analytically from continuous Optimal Navigation (ON) protocols. We show that for our application, ON solutions are unstable for the typical duration of the navigation process and are, therefore, not useful in practice. On the other hand, RL solutions are much more robust with respect to small changes in the initial conditions and to external noise, even when Vs is much smaller than the maximum flow velocity. Furthermore, we show how the RL approach is able to take advantage of the flow properties in order to reach the target, especially when the steering speed is small.

7.
Phys Rev E ; 99(5-1): 053303, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31212557

RESUMO

We introduce a variant of the Hybrid Monte Carlo (HMC) algorithm to address large-deviation statistics in stochastic hydrodynamics. Based on the path-integral approach to stochastic (partial) differential equations, our HMC algorithm samples space-time histories of the dynamical degrees of freedom under the influence of random noise. First, we validate and benchmark the HMC algorithm by reproducing multiscale properties of the one-dimensional Burgers equation driven by Gaussian and white-in-time noise. Second, we show how to implement an importance sampling protocol to significantly enhance, by orders of magnitudes, the probability to sample extreme and rare events, making it possible to estimate moments of field variables of extremely high order (up to 30 and more). By employing reweighting techniques, we map the biased configurations back to the original probability measure in order to probe their statistical importance. Finally, we show that by biasing the system towards very intense negative gradients, the HMC algorithm is able to explore the statistical fluctuations around instanton configurations. Our results will also be interesting and relevant in lattice gauge theory since they provide unique insights into reweighting techniques.

8.
Phys Rev Lett ; 122(14): 144501, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31050461

RESUMO

Three-dimensional anisotropic turbulence in classical fluids tends towards isotropy and homogeneity with decreasing scales, allowing-eventually-the abstract model of homogeneous and isotropic turbulence to be relevant. We show here that the opposite is true for superfluid ^{4}He turbulence in three-dimensional counterflow channel geometry. This flow becomes less isotropic upon decreasing scales, becoming eventually quasi-two-dimensional. The physical reason for this unusual phenomenon is elucidated and supported by theory and simulations.

9.
Phys Rev E ; 98(1-1): 012802, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30110771

RESUMO

We study the effects of thermally induced capillary waves in the fragmentation of a liquid ligament into multiple nanodroplets. Our numerical implementation is based on a fluctuating lattice Boltzmann (LB) model for nonideal multicomponent fluids, including nonequilibrium stochastic fluxes mimicking the effects of molecular forces at the nanoscales. We quantitatively analyze the statistical distribution of the breakup times and the droplet volumes after the fragmentation process at changing the two relevant length scales of the problem, i.e., the thermal length scale and the ligament size. The robustness of the observed findings is also corroborated by quantitative comparisons with the predictions of sharp interface hydrodynamics. Beyond the practical importance of our findings for nanofluidic engineering devices, our study also explores a novel application of LB in the realm of nanofluidic phenomena.

10.
Eur Phys J E Soft Matter ; 41(1): 6, 2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29340874

RESUMO

We study the deformation and dynamics of droplets in time-dependent flows using 3D numerical simulations of two immiscible fluids based on the lattice Boltzmann model (LBM). Analytical models are available in the literature, which assume the droplet shape to be an ellipsoid at all times (P.L. Maffettone, M. Minale, J. Non-Newton. Fluid Mech 78, 227 (1998); M. Minale, Rheol. Acta 47, 667 (2008)). Beyond the practical importance of using a mesoscale simulation to assess "ab initio" the robustness and limitations of such theoretical models, our simulations are also key to discuss --in controlled situations-- some relevant phenomenology related to the interplay between the flow time scales and the droplet time scales regarding the "transparency" transition for high enough shear frequencies for an external oscillating flow. This work may be regarded as a step forward to discuss extensions towards a novel DNS approach, describing the mesoscale physics of small droplets subjected to a generic hydrodynamical strain field, possibly mimicking the effect of a realistic turbulent flow on dilute droplet suspensions.

11.
Eur Phys J E Soft Matter ; 40(12): 110, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29234967

RESUMO

We apply a reinforcement learning algorithm to show how smart particles can learn approximately optimal strategies to navigate in complex flows. In this paper we consider microswimmers in a paradigmatic three-dimensional case given by a stationary superposition of two Arnold-Beltrami-Childress flows with chaotic advection along streamlines. In such a flow, we study the evolution of point-like particles which can decide in which direction to swim, while keeping the velocity amplitude constant. We show that it is sufficient to endow the swimmers with a very restricted set of actions (six fixed swimming directions in our case) to have enough freedom to find efficient strategies to move upward and escape local fluid traps. The key ingredient is the learning-from-experience structure of the algorithm, which assigns positive or negative rewards depending on whether the taken action is, or is not, profitable for the predetermined goal in the long-term horizon. This is another example supporting the efficiency of the reinforcement learning approach to learn how to accomplish difficult tasks in complex fluid environments.

12.
Eur Phys J E Soft Matter ; 38(11): 127, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26614498

RESUMO

We investigate the slip properties of water confined in graphite-like nanochannels by non-equilibrium molecular dynamics simulations, with the aim of identifying and analyze separately the influence of different physical quantities on the slip length. In a system under confinement but connected to a reservoir of fluid, the chemical potential is the natural control parameter: we show that two nanochannels characterized by the same macroscopic contact angle--but a different microscopic surface potential--do not exhibit the same slip length unless the chemical potential of water in the two channels is matched. Some methodological issues related to the preparation of samples for the comparative analysis in confined geometries are also discussed.

13.
Artigo em Inglês | MEDLINE | ID: mdl-25768641

RESUMO

Current implementations of fluctuating lattice Boltzmann equations (FLBEs) describe single component fluids. In this paper, a model based on the continuum kinetic Boltzmann equation for describing multicomponent fluids is extended to incorporate the effects of thermal fluctuations. The thus obtained fluctuating Boltzmann equation is first linearized to apply the theory of linear fluctuations, and expressions for the noise covariances are determined by invoking the fluctuation-dissipation theorem directly at the kinetic level. Crucial for our analysis is the projection of the Boltzmann equation onto the orthonormal Hermite basis. By integrating in space and time the fluctuating Boltzmann equation with a discrete number of velocities, the FLBE is obtained for both ideal and nonideal multicomponent fluids. Numerical simulations are specialized to the case where mean-field interactions are introduced on the lattice, indicating a proper thermalization of the system.


Assuntos
Modelos Teóricos , Simulação por Computador , Hidrodinâmica , Cinética , Modelos Lineares , Processos Estocásticos , Temperatura
14.
Artigo em Inglês | MEDLINE | ID: mdl-24827347

RESUMO

We study the turbulent evolution originated from a system subjected to a Rayleigh-Taylor instability with a double density at high resolution in a two-dimensional geometry using a highly optimized thermal lattice-Boltzmann code for GPUs. Our investigation's initial condition, given by the superposition of three layers with three different densities, leads to the development of two Rayleigh-Taylor fronts that expand upward and downward and collide in the middle of the cell. By using high-resolution numerical data we highlight the effects induced by the collision of the two turbulent fronts in the long-time asymptotic regime. We also provide details on the optimized lattice-Boltzmann code that we have run on a cluster of GPUs.

15.
Artigo em Inglês | MEDLINE | ID: mdl-24580236

RESUMO

We perform a joint numerical and experimental study to systematically characterize the motion of 30 µl drops of pure water and of ethanol in water solutions, sliding over a periodic array of alternating hydrophobic and hydrophilic stripes with a large wettability contrast and a typical width of hundreds of microns. The fraction of the hydrophobic areas has been varied from about 20% to 80%. The effects of the heterogeneous patterning can be described by a renormalized value of the critical Bond number, i.e., the critical dimensionless force needed to depin the drop before it starts to move. Close to the critical Bond number we observe a jerky motion characterized by an evident stick-slip dynamics. As a result, dissipation is strongly localized in time, and the mean velocity of the drops can easily decrease by an order of magnitude compared to the sliding on the homogeneous surface. Lattice Boltzmann numerical simulations are crucial for disclosing to what extent the sliding dynamics can be deduced from the computed balance of capillary, viscous, and body forces by varying the Bond number, the surface composition, and the liquid viscosity. Beyond the critical Bond number, we characterize both experimentally and numerically the dissipation inside the droplet by studying the relation between the average velocity and the applied volume forces.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Microfluídica/métodos , Modelos Químicos , Modelos Moleculares , Oscilometria/métodos , Água/química , Simulação por Computador , Fricção , Ligação de Hidrogênio , Teste de Materiais , Movimento (Física) , Propriedades de Superfície
16.
Phys Rev Lett ; 111(6): 066101, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23971591

RESUMO

We present a comprehensive study of water drops sliding down chemically heterogeneous surfaces formed by a periodic pattern of alternating hydrophobic and hydrophilic stripes. Drops are found to undergo a stick-slip motion whose average speed is an order of magnitude smaller than that measured on a homogeneous surface having the same static contact angle. This motion is the result of the periodic deformations of the drop interface when crossing the stripes. Numerical simulations confirm this view and are used to elucidate the principles underlying the experimental observations.

17.
Phys Rev Lett ; 109(14): 144501, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-23083247

RESUMO

We present a numerical study of two-particle dispersion from point sources in three-dimensional incompressible homogeneous and isotropic turbulence at Reynolds number Re≃300. Tracer particles are emitted in bunches from localized sources smaller than the Kolmogorov scale. We report the first quantitative evidence, supported by an unprecedented statistics, of the deviations of relative dispersion from Richardson's picture. Deviations are due to extreme events of pairs separating much faster than average, and of pairs remaining close for long time. The two classes of events are the fingerprints of complete different physics, the former dominated by inertial subrange and large-scale fluctuations, and the latter by dissipation subrange. A comparison of the relative separation in surrogate white-in-time velocity field, with correct viscous-, inertial-, and integral-scale properties, allows us to assess the importance of temporal correlations along tracer trajectories.

18.
Phys Rev Lett ; 108(10): 104502, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22463414

RESUMO

We present high-resolution numerical simulations of convection in multiphase flows (boiling) using a novel algorithm based on a lattice Boltzmann method. We first study the thermodynamical and kinematic properties of the algorithm. Then, we perform a series of 3D numerical simulations changing the mean properties in the phase diagram and compare convection with and without phase coexistence at Rayleigh number Ra∼10(7). We show that in the presence of nucleating bubbles non-Oberbeck-Boussinesq effects develop, the mean temperature profile becomes asymmetric, and heat-transfer and heat-transfer fluctuations are enhanced, at all Ra studied. We also show that small-scale properties of velocity and temperature fields are strongly affected by the presence of the buoyant bubble leading to high non-gaussian profiles in the bulk.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(1 Pt 2): 016305, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21867302

RESUMO

The parametrization of small-scale turbulent fluctuations in convective systems and in the presence of strong stratification is a key issue for many applied problems in oceanography, atmospheric science, and planetology. In the presence of stratification, one needs to cope with bulk turbulent fluctuations and with inversion regions, where temperature, density, or both develop highly nonlinear mean profiles due to the interactions between the turbulent boundary layer and the unmixed-stable-flow above or below it. We present a second-order closure able to cope simultaneously with both bulk and boundary layer regions, and we test it against high-resolution state-of-the-art two-dimensional numerical simulations in a convective and stratified belt for values of the Rayleigh number up to Ra∼10(10). Data are taken from a Rayleigh-Taylor system confined by the existence of an adiabatic gradient.

20.
Philos Trans A Math Phys Eng Sci ; 369(1945): 2448-55, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21576159

RESUMO

We present state-of-the-art numerical simulations of a two-dimensional Rayleigh-Taylor instability for a compressible stratified fluid. We describe the computational algorithm and its implementation on the QPACE supercomputer. High resolution enables the statistical properties of the evolving interface that we characterize in terms of its fractal dimension to be studied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...