Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Mol Neurobiol ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573413

RESUMO

Ischemic stroke resulting from blockade of brain vessels lacks effective treatments, prompting exploration for potential therapies. Among promising candidates, microRNA-149 (miR-149) has been investigated for its role in alleviating oxidative stress, inflammation, and neurodegeneration associated with ischemic conditions. To evaluate its therapeutic effect, male Wistar rats were categorized into five groups, each consisting of 27 rats: sham, MCAO, lentiviral control, lentiviral miR-149, and miR149-5p mimic. Treatments were microinjected intracerebroventricularly (ICV) (right side), and ischemia was induced using middle cerebral artery occlusion (MCAO) procedure. Post-MCAO, neurological function, histopathological changes, blood-brain barrier (BBB) permeability, cerebral edema, and mRNA levels of Fas ligand (Faslg) and glutamate ionotropic NMDA receptor 1 (GRIN1) were assessed, alongside biochemical assays. MiR-149 administration improved neurological function, reduced brain damage, preserved BBB integrity, and attenuated cerebral edema. Upregulation of miR149-5p decreased Faslg and GRIN1 expression in ischemic brain regions. MiR-149 also reduced oxidative stress, enhanced antioxidant activity, decreased caspase-1 and - 3 activity, and modulated inflammatory factors in ischemic brain regions. Moreover, DNA fragmentation as an index of cell death decreased following miR-149 treatment. In conclusion, the study underscores miR-149 potential as a neuroprotective agent against ischemic stroke, showcasing its efficacy in modulating various mechanisms and supporting its candidacy as a promising therapeutic target for innovative strategies in stroke treatment.

2.
Front Genet ; 14: 1002048, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816018

RESUMO

Introduction: Couples' relationships defined by a complex interaction between the two partners and their intrapersonal traits. Romantic; relationships and love are associated with marital satisfaction and stability, as well as couples' happiness and health. Personality traits influence romantic relationships and, personality influenced by genetical and non-genetically factors. The roles of non-genetically factors such as socioeconomic position and external appearance have revealed in determining the quality of romantic relationships. Methods: We; performed a scoping systematic review to assess the association between genetics and epigenetic factors and romantic relationship. Relevant articles were identified by PubMed, EMBASE, Web of Science, Scopus, and the APA PsycInfo searching between inception and 4 June 2022. Results: Different studies evaluated the associated polymorphisms in 15 different genes or chromosomal regions. In the first step; we classified them into four groups: (1) Oxytocin-related signaling pathway (OXTR, CD38, and AVPR1A); (2) Serotonin-related signaling pathway (SLC6A4, HTR1A, and HTR2A); (3) Dopamine and catecholamine-related signaling pathway (DRD1, DRD2, DRD4, ANKK1, and COMT); and (4) other genes (HLA, GABRA2, OPRM1, and Y-DNA haplogroup D-M55). Then, we evaluated and extracted significant polymorphisms that affect couple adjustment and romantic relationships. Discussion: Overall, the findings suggest that genetic and epigenetics variants play a key role in marital adjustment and romantic relationships over time.

3.
Nanomedicine ; 48: 102637, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36549552

RESUMO

The complex stroke pathophysiology, like oxidative stress and inflammatory reactions, causes substantially challenged in stroke treatment. Thymoquinone (TQ) is attributed to pharmacological actions like antioxidant and anti-inflammation. Thymoquinone is chemically hydrophobic, which causes poor solubility and bioavailability. To overcome this challenge Thymoquinone niosome was applied in this in-vivo study. The results demonstrated a significant reduction in rats treated with Thymoquinone niosome compared to free Thymoquinone and control groups (SOD), (TAC), and (GPX) activities were increased in the TQN group compared to the MCAO control group. The decrease in (MDA) level was seen in the Thymoquinone niosome group compared to the MCAO control group. The inflammation factors expression rates of IL-IB, IL-6, TNFα in I/R Thymoquinone niosome group were decreased. This study indicated that Thymoquinone niosome might be utilized as a promising novel carrier to improve Thymoquinone bioavailability and therapeutic effect in treating cerebral I/R injury.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Ratos , Masculino , Animais , Ratos Wistar , Lipossomos/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Estresse Oxidativo , Acidente Vascular Cerebral/tratamento farmacológico
4.
Basic Clin Neurosci ; 13(3): 357-371, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36457883

RESUMO

Introduction: The death of neurons and cerebral edema are the main consequences of stroke. However, inflammatory processes play key roles in aggravating cerebral damage following a stroke. This study aimed to investigate the effects of Viola odorata extract (VOE) on the infarct volume (IV), neurologic deficits (ND), and the expression of NF-κB and VCAM-1 in the Middle Cerebral Artery Occlusion (MCAO) model. Methods: The animals were randomly separated into 6 groups: (1) control group, (2) vehicle-treated group, (3) MCAO group, (4) VOE25 group, (5) VOE50 group, and (6) VOE75 group (n= 12). VOE (25, 50, and 75 mg/kg) and distilled water were administered daily for 30 days. Two hours after the last gavage, the rats were exposed to MCAO for 60 minutes. Twenty-four hours later, IV, ND, and NF-κB/VCAM-1 expressions were evaluated. Results: Viola odorata extract exhibited excellent neuroprotective effects by reducing IV (mainly in the core and subcortex areas), and induced downregulation of NF-κB and VCAM-1 expression. Conclusion: Viola odorata could also activate intracellular pathways, reducing the expression of NF-κB and VCAM-1. It is useful for developing a novel medical herb for treating cerebral ischemia. Highlights: A stroke occurs when the blood supply to a part of the brain is interrupted or reduced.Viola odorata extract (VOE) reduced the infarct volumes (IV) in rats' brains 24 h after middle cerebral artery occlusion (MCAO).VOE may decrease IV in the MCAO model by downregulating the NF-κB/VCAM-1 expression. Plain Language Summary: A stroke is a medical condition in which poor blood flow to the brain results in cell death. After an interruption of blood flow, energy stores are rapidly depleted, and complex cellular cascades induce excitotoxic cell death. So far, no effective and specific treatment has been suggested for the stroke. In this study, the neuroprotective effects of the viola odorata extract (VOE) were screened. The V. odorata extract exhibited excellent neuroprotective effects by reducing infarct volume and inducing downregulation of NF-κB/VCAM-1 expression. This finding suggests that V. odorata may be useful for developing a novel medical herb for treating cerebral ischemia.

5.
Iran J Pathol ; 17(3): 342-353, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247500

RESUMO

Background & Objective: Parkinson's disease (PD) is a progressive neurodegenerative disorder in which the cause is attributed to the alpha-synuclein (α-Syn) accumulation due to the decreased rate of autophagy. Due to the many advantages, mesenchymal stem cells (MSCs), such as the secretion of neurotrophic factors, have been proposed for PD cell therapy. The present study, in continuation of the previous study, aimed to investigate the therapeutic effect of human-derived Conjunctival MSCs (CJ-MSCs) on the clearance of α-Syn by the microRNA-149(miR-149)/Akt/mTOR/ pathway. Methods: Stereotaxic 6-hydroxy dopamine (6-OHDA) was injected directly into the medial forebrain bundle (MFB) to induce Parkinson's disease. An apomorphine-induced rotation test was used to confirm the model establishment. CJ-MSCs were encapsulated in alginate microgel using a microfluidic system. The green fluorescent protein (GFP) labeled CJ-MSCs were encapsulated, and free cells were transplanted into the rats' right striatum. Behavioral and molecular analyses evaluated the potency of CJ-MSCs (encapsulated and free cells) in PD rats. Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) was performed to investigate the expression of the miR-149-5p, Akt, mTOR, and α-Syn. Results: Our obtained results indicated that transplantation of CJ-MSCs leads to a decrease in the number of rotations while raising the balance and motor abilities. The gene expression evaluation showed a significant reduction in Akt, mTOR, and α-Syn mRNA levels and a significant increase in the level of miR-149-5p compared to the control group. Conclusion: It seems that CJ-MSCs can promote the degradation of intracellular α-Syn by miR-149-5p/Akt/mTOR pathway and improve rats' motor functions.

6.
Neurochem Res ; 47(6): 1736-1750, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35286515

RESUMO

Excitotoxicity and oxidative stress are central to the pathology of the nervous system, and inhibition of excitotoxicity induced by glutamate is one of the therapeutic goals determined for stroke. The present study aimed to investigate the effects of Astaxanthin, a potent natural antioxidant, on complications caused by acute cerebral stroke. In this research, 60 male Wistar rats were used which were divided into 5 groups as follow: (1) the sham group (vehicle), (2) the ischemic control group (vehicle), and the ischemic groups treated by Astaxanthin with doses of 25, 45, and 65 mg/kg. In the ischemic groups, ischemic model was performed by middle cerebral artery occlusion (MCAO) method, and the Astaxanthin administration was carried out after the artery occlusion and before opening the artery. The obtained results indicated that Astaxanthin could significantly reduce stroke volume, neurological deficits, and lipid peroxidation. Moreover, it was able to restore total oxidant status (TOS) and caspase 3 level to the normal level. The activity of antioxidant enzyme glutathione peroxidase (GPX), and the expression of catalase, GPx and nuclear factor kappa B (NFκb) genes, which were reduced after ischemia, were increased. This phenomenon was particularly pronounced for glutamate transporter 1 (GLT-1). Furthermore, Astaxanthin decreased the augmented pro-apoptotic gene Bax and restored the reduced Bcl2 expression to the normal level. Significant effects on the P53 and PUMA expression were not observed. Overall, the medium dosage of Astaxanthin appears to be more effective in reducing the complications of ischemia, particularly on our major study endpoints (stroke volume and neurological defects). Longer studies with a more frequent administration of Astaxanthin are required to better understand the precise mechanism of Astaxanthin.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Animais , Antioxidantes/uso terapêutico , Lesões Encefálicas/tratamento farmacológico , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Masculino , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Wistar , Reperfusão , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Acidente Vascular Cerebral/tratamento farmacológico , Xantofilas
7.
Braz. J. Pharm. Sci. (Online) ; 58: e19677, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1383959

RESUMO

Abstract Blood-brain barrier (BBB) disruption, inflammation, and cell death are major pathogenic mechanisms in ischemic stroke. Dimethyl fumarate (DMF) has anti-inflammatory and immune-modulatory effects. So, this study aimed to elucidate the effects of DMF on brain ischemia in the middle cerebral artery occlusion (MCAO) model. 69 Sprague-Dawley male rats were allocated into a sham group that was just subjected to surgery stress; vehicle and DMF groups, after MCAO, received vehicle or 30 mg/kg DMF for three days. Neurological scores were evaluated every day. BBB disruption was evaluated by the extravasation of Evans blue. In addition to the measurement of brain water content, the total and infarct volume, numerical density, and the total number of neurons, non-neurons, and dead neurons in the right cortex were estimated by stereological methods. RT-PCR was done to analyze the expression levels of NF-κB and Nrf2. Although brain ischemia treatment with DMF did not have a significant effect on the infarction size, it improved neurobehavioral function, BBB disruption, cerebral edema, increased number of neurons, and expression of Nrf2. It also decreased the number of dead neurons and the expression of NF-κB. DMF beneficial effects on stroke may be mediated through both increase of the Nrf2 and decrease of NF-κB expression


Assuntos
Animais , Masculino , Ratos , Isquemia Encefálica/patologia , Usos Terapêuticos , Fumarato de Dimetilo/efeitos adversos , Edema Encefálico/patologia
8.
Exp Mol Pathol ; 123: 104703, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34619140

RESUMO

BACKGROUND AND AIM: Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by the destruction of the dopaminergic neurons in the nigrostriatal pathway, leading to motor-behavioral complications. Cell therapy has been proposed as a promising approach for PD treatment using various cellular sources. Despite a few disadvantages mesenchymal stem cells (MSCs) represent, they have more auspicious effects for PD cell therapy. The present study aimed to evaluate a new source of MSCs isolated from human Conjunctiva (CJ-MSCs) impact on PD complications for the first time. MATERIALS AND METHODS: Parkinson's was induced by stereotactic injection of 6-hydroxydopamine (6-OHDA) into the right medial forebrain bundle (MFB). An apomorphine-induced rotation test was used to confirm the model establishment. After PD model confirmation, green fluorescent protein (GFP) labeled CJ-MSCs and induced CJ-MSCs (microfluidic encapsulated and non-capsulated) were transplanted into the rats' right striatum. Then Rotation, Rotarod, and Open-field tests were performed to evaluate the behavioral assessment. Additionally, the immunohistochemistry technique was used for identifying tyrosine hydroxylase (TH). RESULTS: According to the obtained data, the cell transplantation caused a reduction in the rats' rotation number and improved locomotion compared to the control group. The previous results were also more pronounced in induced and microfluidic encapsulated cells compared to other cells. Rats recipient CJ-MSCs also have represented more TH-expressed GFP-labeled cell numbers in the striatum than the control group. CONCLUSION: It can be concluded that CJ-MSCs therapy can have protective effects against PD complications and nerve induction of cells due to their ability to express dopamine. On the other hand, CJ-MSCs microencapsulating leads to enhance even more protective effect of CJ-MSCs. However, confirmation of this hypothesis requires further studies and investigation of these cells' possible mechanisms of action.


Assuntos
Túnica Conjuntiva/transplante , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Doença de Parkinson/terapia , Animais , Túnica Conjuntiva/citologia , Corpo Estriado/patologia , Corpo Estriado/transplante , Modelos Animais de Doenças , Humanos , Técnicas Analíticas Microfluídicas , Oxidopamina/farmacologia , Doença de Parkinson/patologia , Ratos
9.
J Chem Neuroanat ; 117: 102000, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34233211

RESUMO

INTRODUCTION: Ischemic stroke remains a major cause of disability and death worldwide. The density and the spatial distribution of the primary motor (M1) cortical neurons are important in signal transmission and control the movement-related functions. Recently, the neuroprotective effect of nicorandil in cerebral ischemia was described through its anti-apoptosis, antioxidant and anti-inflammatory properties. This study aimed to determine the effects of nicorandil on the neurobehavioral outcome, infarct size, and density, and spatial distribution of M1 cortical neurons after cerebral ischemia. METHODS: Thirty Sprague-Dawley rats were randomly divided into three groups. Sham underwent surgery without middle cerebral artery occlusion (MCAO) and drug. The MCAO and treatment groups after MCAO received saline or nicorandil 2, 24, 48, and 72 h after the induction of brain ischemia. Neurobehavioral tests were performed, brains removed, sectioned, and stained by 2,3,5-triphenyltetrazolium chloride (TTC) to estimate the size of the infarction and Nissl staining to evaluate the numerical density, mean area, and the distribution pattern of M1 cortical neurons, using Voronoi spatial tessellation. RESULTS: Although nicorandil treatment significantly decreased the neurological deficits and density of neuronal neighbors, it could not preserve the normal regular spatial distributions of M1 cortical neurons after MCAO. It also could not significantly improve motor function or reduce ischemic lesion size. CONCLUSIONS: Treatment using the present dose of nicorandil during sub-acute ischemic stroke could not increase neuronal density or preserve the normal regular spatial distributions after MCAO. However, it had beneficial effects on neurobehavioral and motor function and somewhat reduced ischemic lesion size.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Modelos Animais de Doenças , Córtex Motor/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Nicorandil/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Isquemia Encefálica/patologia , Masculino , Córtex Motor/patologia , Neurônios Motores/patologia , Nicorandil/farmacologia , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/patologia , Resultado do Tratamento , Vasodilatadores/farmacologia , Vasodilatadores/uso terapêutico
10.
Cell J ; 23(3): 303-312, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34308573

RESUMO

OBJECTIVE: Choroid plexus epithelial cells (CPECs) have the epithelial characteristic, produce cerebrospinal fluid, contribute to the detoxification process in the central nervous system (CNS), and are responsible for the synthesis and release of many nerve growth factors. On the other hand, studies suggest that normobaric hyperoxia (HO) by induction of ischemic tolerance (IT) can protect against brain damage and neurological diseases. We examined the effect of combination therapy of encapsulated CPECs and HO to protect against ischemic brain injury. MATERIALS AND METHODS: In this experimental study, six groups of adult male Wistar rats were randomly organized: sham, room air (RA)+middle cerebral artery occlusion (MCAO), HO+MCAO, RA+MCAO+encapsulated CPECs, HO+MCAO+encapsulated CPECs, RA+MCAO+empty capsules. RA/HO were pretreatment. The CPECs were isolated from the brain of neonatal Wistar rats, cultured, and encapsulated. Then microencapsulated CPECs were transplanted in the neck of the animal immediately after the onset of reperfusion in adult rats that had been exposed to 60 minutes MCAO. After 23 hours of reperfusion, the neurologic deficit score (NDS) was assessed. Next, rats were killed, and brains were isolated for measuring brain infarction volume, blood-brain barrier (BBB) permeability, edema, the activity of superoxide dismutase (SOD), and catalase (CAT) and also, the level of malondialdehyde (MDA). RESULTS: Our results showed that NDS decreased equally in HO+MCAO, RA+MCAO+encapsulated CPECs, and HO+MCAO+encapsulated CPECs groups. Brain infarction volume decreased up 79%, BBB stability increased, edema decreased, SOD and CAT activities increased, and MDA decreased in the combination group of HO and transplantation of encapsulated CPECs in the ischemic brain as compared with when HO or transplantation of encapsulated CPECs was applied alone. CONCLUSION: The combination of HO and transplantation of encapsulated CPECs for stroke in rats was more effective than the other treatments, and it can be taken into account as a promising treatment for ischemic stroke.

11.
J Stroke Cerebrovasc Dis ; 30(4): 105630, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33497934

RESUMO

BACKGROUND: The therapeutic effects of dimethyl fumarate (DMF) in patients with multiple sclerosis and animal models of neurologic disease were reported. The density and the distribution pattern of motor neurons are important in transmitting the signal and controlling the movement-related functions. The present study evaluated the effects of DMF treatment on the neurological functions, infarct volume, and spatial distribution of the neurons in the primary motor cortex after cerebral ischemia. METHODS: Thirty-three Sprague-Dawley rats were randomly divided into three groups: The sham group underwent surgery without middle cerebral artery occlusion (MCAO) and drug. The vehicle and treatment groups after MCAO received a vehicle or DMF for three consecutive days. Post-stroke neurological and motor functions were assessed. At the end of the third day, the brains were removed, and the cerebral infarct volume was evaluated. We used cresyl violet staining to analyze the density and the spatial arrangement of motor cortical neurons using Voronoi tessellation. RESULTS: Treatment of the brain ischemia for three days with DMF could not significantly reduce the neurological and motor function deficits and infarct volume. However, it reduced the neuronal area and death and preserved their spatial distribution in the normal regular pattern. CONCLUSION: Cerebral ischemia decreased the neuronal density of the primary motor cortex and changed their distributions to a random pattern. DMF treatment during sub-acute ischemic stroke did not significantly improve the neurological deficit scores. However, it could prevent neuronal swelling and death and preserved the spatial distribution of the cortical neurons in their normal pattern.


Assuntos
Comportamento Animal/efeitos dos fármacos , Fumarato de Dimetilo/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , AVC Isquêmico/tratamento farmacológico , Atividade Motora/efeitos dos fármacos , Córtex Motor/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , AVC Isquêmico/patologia , AVC Isquêmico/fisiopatologia , Masculino , Córtex Motor/patologia , Córtex Motor/fisiopatologia , Neurônios Motores/patologia , Ratos Sprague-Dawley , Teste de Desempenho do Rota-Rod , Fatores de Tempo
12.
Brain Res Bull ; 169: 205-213, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33508402

RESUMO

The increase in some factors following cerebral ischemia, especially Matrix metalloproteinase (MMPs) and inflammatory factors lead to blood-brain barrier (BBB) damages, edema and neuronal death. Previous studies have shown that these molecules are miRNA-149-5p (miR-149) and Coenzyme (Co) Q10 targets. Therefore, in this study, the effect of mimic of miRNA-149-5p (mimic miR) and CoQ10 on the expression of metalloproteinase 1 and 2 and inflammatory cytokines following injury caused by cerebral ischemia is investigated. Cerebral ischemia was modeled by Middle Cerebral Artery Occlusion (MCAO). Male Wistar rats were randomly divided into 6 groups: sham (without surgery and treatment), control (MCAO), negative control (NC): MCAO + scrambled miR, vehicle: MCAO + Ethanole, first treatment: MCAO + mimic miR, second treatment: MCAO + Q10. Each group was divided into 6 subgroups to evaluate neurological defects, the volume of tissue damage using 2,3,5-triphenyl tetrazolium chloride (TTC) staining, blood-brain barrier permeability using cerebral Evans Blue (EB) staining, edema by measuring the percentage of brain water, MMP-2,9 mRNA and miR-149-5p levels using Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) and the levels of IL-6 and TNF-α proteins using ELISA. The data obtained from this study showed that the use of mimic miR and Q10 increased the level of miR-149, decreased the extent of neurological defects and tissue damage, increased BBB integrity, decreased brain water percentage and also decreased the level of inflammatory cytokines and MMPs. It seems that the use mimic of miRNA-149-5p and Q10 can have a protective effect on the brain by reducing MMPs and inflammatory factors following cerebral ischemia and this could lead to a new treatment strategy to reduce the complications of cerebral ischemia.


Assuntos
Edema Encefálico/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Citocinas/metabolismo , Metaloproteases/metabolismo , MicroRNAs/metabolismo , Fármacos Neuroprotetores/farmacologia , Ubiquinona/análogos & derivados , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Edema Encefálico/genética , Edema Encefálico/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Modelos Animais de Doenças , Masculino , MicroRNAs/genética , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Wistar , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico
13.
Neurol Res ; 43(3): 225-238, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33167823

RESUMO

OBJECTIVE: Stroke, a cerebrovascular disease, has been introduced as the second cause of death and physical disability in the world. Recently, cell-based therapy has been considered by the scientific community as a promising strategy for reducing ischemic damages. The stem cells of the umbilical cord release growth and neurotrophic factors. The remarkable properties of these cells are the reason why they were selected as a potential candidate in the present research. METHODS: In this study, the impact of transplanting umbilical cord stem cells on injuries resulting from ischemia was investigated. The male rats were categorized into three major. Using stereotaxic surgery, stem cells were injected to the right striatum of the brain. One week after transplantation, cerebral ischemic induction surgery was performed. The rats in the transplantation + ischemia group were separately divided into distinct sub-groups to explore the score of the neurological deficits, infarction volume, integrity of the blood-brain barrier, and brain edema. RESULTS: In this study, a significant decrease was observed in the neurological deficits of the transplantation + ischemia group compared with those of the control group. Similarly, the volume of infarction, the permeability of the blood-brain barrier, and edema were significantly reduced in the transplantation + ischemia group in comparison with those of the control group. CONCLUSION: The pretreatment of the transplanted umbilical cord stem cells in the striatum of ischemic rats possibly leads to restorative events, exerting a decreasing effect on cell death. Subsequently, these events may improve the motor ability and reduce ischemic injuries.


Assuntos
Isquemia Encefálica , Transplante de Células-Tronco Mesenquimais/métodos , Acidente Vascular Cerebral , Animais , Modelos Animais de Doenças , Humanos , Masculino , Ratos , Ratos Wistar
14.
Iran J Pharm Res ; 19(2): 98-114, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224215

RESUMO

One of the newest methods to reduce cerebral ischemia damages is cell therapy. The aim of this study is to evaluate the effect of Sertoli cell transplantation on ischemia-induced injuries in animal models of stroke. Rats were divided into four groups: transplant+ischemia, ischemia, sham, and control. Sertoli cells were separated from the other testis of rats and cultured. Unilateral Sertoli cell transplantation was performed in the right striatum by using stereotaxic surgery. For induction of brain ischemia, middle cerebral artery occlusion surgery was used 14 days after transplantation. By using western blotting method, expression of nuclear factor kappa (NF-кB) and Bax were evaluated. In this study, a remarkable decrease in neurological deficits, infection, blood-brain barrier permeability, and brain edema was observed in the cell transplant recipient group in comparison with the ischemia group. Probably, a reduction in inflammation (NF-кB factor) and apoptosis (Bax) following injection of Sertoli cells result in amelioration of ischemic damages induced by MCAO surgery.

15.
J Stroke Cerebrovasc Dis ; 29(8): 104977, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32689608

RESUMO

BACKGROUND: Ischemic stroke is a severe neurological disorder that affected millions of people worldwide. Neuro-inflammation and apoptosis play an essential role in the pathogenesis of neuronal death during ischemic stroke. Alpha-pinene is a bicyclic terpenoid with anti-inflammatory and anti-apoptotic activities. Accordingly, the main purpose of this study was to assess the protective effect of α-pinene in ischemic stroke. MATERIALS AND METHODS: To induce ischemic stroke in male Wistar rats, the middle cerebral artery was occluded for 60 min followed by 24 h reperfusion. Alpha-pinene was injected intraperitoneally at the beginning of reperfusion. A day after reperfusion, the neurological deficits, volume of infarct area, and blood-brain barrier (BBB) permeability were evaluated. The mRNA expression of inflammatory cytokines as well as pro- and anti-apoptotic genes was assessed by using reverse transcription-polymerase chain reaction. The protein levels of inflammatory cytokines were also measured by ELISA method. RESULTS: The results showed that α-pinene (50 and 100 mg/kg) significantly improved sensorimotor function and decreased the volume of infarct area in the brain. The high permeability of BBB was also alleviated by α-pinene (50 and 100 mg/kg) in ischemic areas. Besides, α-pinene (100 mg/kg) attenuated neuro-inflammation through decreasing both the gene and protein expression of TNF-α and IL-1ß in the hippocampus, cortex, and striatum. Besides, α-pinene (100 mg/kg) suppressed apoptosis via downregulation of the pro-apoptotic Bax mRNA expression with a concomitant upregulation of anti-apoptotic Bcl-2 gene expression. CONCLUSIONS: Overall, it was concluded that α-pinene exerts neuroprotective effect during ischemic stroke through attenuating neuroinflammation and inhibition of apoptosis.


Assuntos
Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Monoterpenos Bicíclicos/farmacologia , Encéfalo/efeitos dos fármacos , Citocinas/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Comportamento Animal/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Permeabilidade Capilar/efeitos dos fármacos , Citocinas/genética , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia , Transdução de Sinais , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
16.
J Biosci ; 452020.
Artigo em Inglês | MEDLINE | ID: mdl-32345775

RESUMO

Blood-brain barrier (BBB) disruption, inflammation, and cell death are the pathogenic mechanisms of cerebral ischemia/reperfusion (I/R) injury. Nicorandil protects ischemic injury via some of these mechanisms. The aim of this study was to investigate the therapeutic effects of this drug on the brain ischemia after transient middle cerebral artery occlusion (MCAO) and clarify the NF-jB and Nrf2-dependent mechanisms modulated by this drug. Sixty-six rats were randomized into sham, MCAO and MCAO + nicorandil groups with oral gavage for 3 days. Cerebral I/R injury were induced by a transient MCAO for 1 h and neurobehavioral scores were performed for 3 days. In addition to measurement of BBB disruption and brain water content, the total and infarct volume, density, and total number of neurons, non-neurons and dead neurons in the right cortex were estimated by unbiased stereological methods. RT-PCR was performed to analyze the expression levels of NFjB and Nrf2. Although nicorandil treatment in the sub-acute brain ischemia did not have a prominent effect on neurobehavioral function and number of neurons, non-neurons and dead neurons probably through up-regulation of NF-jB, it, however, improved ischemia-induced BBB disruption and brain edema and showed a significant reduction in the infarction volume probably through up-regulation of Nrf2.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Edema Encefálico/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Fármacos Neuroprotetores/farmacologia , Nicorandil/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Comportamento Animal/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Edema Encefálico/patologia , Infarto Encefálico/tratamento farmacológico , Infarto Encefálico/fisiopatologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/etiologia , Isquemia Encefálica/fisiopatologia , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/complicações , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/uso terapêutico , Nicorandil/uso terapêutico , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia
17.
Basic Clin Neurosci ; 11(6): 811-820, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33850618

RESUMO

INTRODUCTION: MicroRNAs (miRNAs or miRs) are non-coding RNAs. Studies have shown that miRNAs are expressed aberrantly in stroke. The miR1 enhances ischemic damage, and a previous study has demonstrated that reduction of miR1 level has a neuroprotective effect on the Middle Cerebral Artery Occlusion (MCAO). Since apoptosis is one of the important processes in neural protection, the possible effect of miR1 on this pathway has been tested in this study. Post-ischemic administration of miR1 antagomir reduces infarct volume via bcl-w and bad expression. METHODS: Rats were divided into four experimental groups: sham, control, positive control, and antagomir treatment group. One hour after MCAO surgery, the rats were received intravenously (Tail vein) 0.1 mL Normal Saline (NS), 0.1 mL rapamycin, and 300 pmol/g miR1 antagomir (soluble in 0.1 mL normal saline) in control, positive control, and treatment group, respectively. Twenty-four hours after reperfusion infarct volume was measured. The expression of miR1, bcl-w, and bad were analyzed using real-time PCR in sham, control, and treated groups. RESULTS: Our results indicate that administration of miR1 antagomir reduces infarct volume significantly, it also decreases miR1 and bad expression while increases bcl-w expression. CONCLUSION: Understanding the precise neuroprotective mechanism of miR1 antagomir can make it a proper treatment and an innovative approach for stroke therapy.

18.
J Pharm Pharmacol ; 71(11): 1725-1733, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31523814

RESUMO

OBJECTIVES: Oxidative stress and inflammation have a critical role in the pathogenesis of ischaemic stroke. Alpha-pinene is a monoterpenoid molecule with anti-inflammatory and antioxidant properties. The nobility of the present study was to evaluate the neuroprotective effect of α-pinene in ischaemic stroke. METHODS: Ischaemic stroke was induced by transient middle cerebral artery occlusion followed by 24 h reperfusion in male Wistar rats. Alpha-pinene (25, 50 and 100 mg/kg, i.p.) was administered in the beginning of reperfusion. Then, the neurobehavioural function, infarct volume, brain oedema, antioxidant enzyme activity and the concentration of malondialdehyde (MDA), nitric oxide (NO) and interleukin-6 (IL-6) were evaluated by different methods in the brain. KEY FINDINGS: Alpha-pinene (50 and 100 mg/kg) elicited a significant decrease in the brain oedema and infarct size as well as an improvement in the neurobehavioural function. Besides, α-pinene (100 mg/kg) restored the function of superoxide dismutase, catalase and glutathione peroxidase and reduced the concentration of MDA, NO and IL-6 in the hippocampus, cortex and striatum. CONCLUSIONS: It was ultimately attainted that α-pinene exerts neuroprotective effect in ischaemic stroke in rat through the restoration of antioxidant enzymes activity, attenuation of lipid peroxidation and reduction of inflammation in the ischaemic brains.


Assuntos
Monoterpenos Bicíclicos/farmacologia , Isquemia Encefálica/tratamento farmacológico , Inflamação/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Antioxidantes/metabolismo , Isquemia Encefálica/metabolismo , Catalase/metabolismo , Modelos Animais de Doenças , Glutationa/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Inflamação/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Fármacos Neuroprotetores/farmacologia , Oxirredução/efeitos dos fármacos , Ratos , Ratos Wistar , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Acidente Vascular Cerebral/metabolismo , Superóxido Dismutase/metabolismo
19.
Neuromolecular Med ; 21(2): 132-142, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30784006

RESUMO

Epigenetic agents, such as neonatal isolation during neurodevelopmental period of life, can change various regions of the brain. It may further induce psychological disorders such as autistic-like phenomena. This study indicated the role of chronic increased anterior cingulate cortex (ACC) output on alteration of caudate putamen (CPu) as a main behavior regulator region of the brain in adult maternal deprived (MD) rats. For making an animal model, neonates were isolated from their mothers in postnatal days (PND 1-10, 3 h/day). Subsequently, they bilaterally received pLenti-CaMKIIa-hChR2 (H134R)-mCherry-WPRE virus in ACC area via stereotaxic surgery in PND50. After 22 days, these regions were exposed to blue laser (473 nm) for six consecutive days (15 min/day). Then, behavioral deficits were tested and were compared with control group in the following day. Animals were immediately killed and their brains were prepared for tissue processing. Results showed that neonatal isolation induces autistic-like behaviors and leads to overexpression of NMDAR1 and Nox2-gp91phox proteins and elevation of catalase activity in the CPu regions of the adult offspring compared with control group. Chronic optogenetic stimulation of ACC neurons containing (ChR2+) led to significant reduction in the appearance of stereotypical behavior and alien-phobia in MD rats. The amount of NMDAR1 and Nox2-gp91phox expression and the catalase activity in CPu were reduced after this treatment. Therefore, autistic-like behavior seems to be related with elevation of NMDAR1 and Nox2-gp91phox protein levels that enhance the effect of glutamatergic projection on CPu regions. Optogenetic treatment also could ameliorate behavioral deficits by modulating these protein densities.


Assuntos
Transtorno Autístico , Núcleo Caudado , Giro do Cíngulo , Privação Materna , Optogenética , Putamen , Animais , Feminino , Masculino , Ratos , Animais Recém-Nascidos , Transtorno Autístico/fisiopatologia , Transtorno Autístico/terapia , Catalase/biossíntese , Catalase/genética , Núcleo Caudado/fisiopatologia , Modelos Animais de Doenças , Genes Reporter , Vetores Genéticos/administração & dosagem , Giro do Cíngulo/fisiopatologia , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Microinjeções , NADPH Oxidase 2/biossíntese , NADPH Oxidase 2/genética , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Fobia Social , Putamen/fisiopatologia , Distribuição Aleatória , Receptores de N-Metil-D-Aspartato/biossíntese , Receptores de N-Metil-D-Aspartato/genética , Comportamento Social , Estresse Psicológico , Proteína Vermelha Fluorescente
20.
Mol Biol Rep ; 46(1): 1149-1155, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30707419

RESUMO

Stroke is one of the leading causes of death in the world, but the underlying molecular mechanism of this disease remains elusive, thus it will be great challenges to finding appropriate protection. MicroRNAs are short, single-stranded, non-coding RNAs and recent studies have shown that they are aberrantly expressed in ischemic condition. Due to the fact that miR-1 has harmful effects on neural damages during brain ischemia, limited miR-1 has been proven to be protective in middle cerebral artery occlusion (MCAO). Here, the possible positive effect of intravenous injection of antagomiR-1 as a post-ischemic treatment on neurological deficits, infarct volume, brain edema and blood-brain barrier (BBB) permeability was evaluated. The rats were divided randomly into three experimental groups, each with 21 animals. MCAO surgery was performed on all groups and one hour later, 0.1 ml normal saline, 0.1 ml rapamycin and 300 pmol/g miR-1 antagomir (soluble in 0.1 ml normal saline), were injected intravenously into control, positive control and treatment group, respectively. After 24 h, neurologic deficits score, infarct volume, brain edema and BBB permeability were measured. The results indicated that post-treatment with miR-1 antagomir significantly improved neurological deficits and reduced infarction volume, brain edema, and BBB permeability. These data proved that there is a positive effects of antagomiR-1 on ischemic neuronal injury and neurological impairment. Due to the fact that microRNAs are able to protect the brain, it would be a promising therapeutic approach to stroke treatment.


Assuntos
Antagomirs/uso terapêutico , Isquemia Encefálica/terapia , MicroRNAs/antagonistas & inibidores , Administração Intravenosa/métodos , Animais , Antagomirs/genética , Barreira Hematoencefálica/patologia , Encéfalo/efeitos dos fármacos , Isquemia Encefálica/genética , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/terapia , Masculino , MicroRNAs/genética , Neurônios/efeitos dos fármacos , Ratos , Ratos Wistar , Sirolimo/uso terapêutico , Acidente Vascular Cerebral/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...