Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(34): 14627-14637, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32786654

RESUMO

Developing O2-selective adsorbents that can produce high-purity oxygen from air remains a significant challenge. Here, we show that chemically reduced metal-organic framework materials of the type AxFe2(bdp)3 (A = Na+, K+; bdp2- = 1,4-benzenedipyrazolate; 0 < x ≤ 2), which feature coordinatively saturated iron centers, are capable of strong and selective adsorption of O2 over N2 at ambient (25 °C) or even elevated (200 °C) temperature. A combination of gas adsorption analysis, single-crystal X-ray diffraction, magnetic susceptibility measurements, and a range of spectroscopic methods, including 23Na solid-state NMR, Mössbauer, and X-ray photoelectron spectroscopies, are employed as probes of O2 uptake. Significantly, the results support a selective adsorption mechanism involving outer-sphere electron transfer from the framework to form superoxide species, which are subsequently stabilized by intercalated alkali metal cations that reside in the one-dimensional triangular pores of the structure. We further demonstrate O2 uptake behavior similar to that of AxFe2(bdp)3 in an expanded-pore framework analogue and thereby gain additional insight into the O2 adsorption mechanism. The chemical reduction of a robust metal-organic framework to render it capable of binding O2 through such an outer-sphere electron transfer mechanism represents a promising and underexplored strategy for the design of next-generation O2 adsorbents.


Assuntos
Ferro/química , Estruturas Metalorgânicas/química , Oxigênio/química , Pirazóis/química , Temperatura , Adsorção , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
2.
ChemSusChem ; 13(11): 2966-2972, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32222112

RESUMO

A mechanochemical route is developed for room-temperature and solvent-free derivatization of different types of amides into carbamoyl isatins (up to 96 % conversion or yield), benzamides (up to 81 % yield), and imides (up to 92 % yield). In solution, this copper-catalyzed coupling either does not take place or requires high temperatures at which it may also be competing with alternative thermal reactivity, highlighting the beneficial role of mechanochemistry for this reaction. Such behavior resembles the previously investigated coupling with sulfonamide substrates, suggesting that this type of C-N coupling is an example of a mechanochemically favored reaction, for which mechanochemistry appears to be a favored environment over solution.

3.
Chem Sci ; 11(34): 9173-9180, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34123166

RESUMO

Precisely locating extra-framework cations in anionic metal-organic framework compounds remains a long-standing, yet crucial, challenge for elucidating structure-performance relationships in functional materials. Single-crystal X-ray diffraction is one of the most powerful approaches for this task, but single crystals of frameworks often degrade when subjected to post-synthetic metalation or reduction. Here, we demonstrate the growth of sizable single crystals of the robust metal-organic framework Fe2(bdp)3 (bdp2- = benzene-1,4-dipyrazolate) and employ single-crystal-to-single-crystal chemical reductions to access the solvated framework materials A2Fe2(bdp)3·yTHF (A = Li+, Na+, K+). X-ray diffraction analysis of the sodium and potassium congeners reveals that the cations are located near the center of the triangular framework channels and are stabilized by weak cation-π interactions with the framework ligands. Freeze-drying with benzene enables isolation of activated single crystals of Na0.5Fe2(bdp)3 and Li2Fe2(bdp)3 and the first structural characterization of activated metal-organic frameworks wherein extra-framework alkali metal cations are also structurally located. Comparison of the solvated and activated sodium-containing structures reveals that the cation positions differ in the two materials, likely due to cation migration that occurs upon solvent removal to maximize stabilizing cation-π interactions. Hydrogen adsorption data indicate that these cation-framework interactions are sufficient to diminish the effective cationic charge, leading to little or no enhancement in gas uptake relative to Fe2(bdp)3. In contrast, Mg0.85Fe2(bdp)3 exhibits enhanced H2 affinity and capacity over the non-reduced parent material. This observation shows that increasing the charge density of the pore-residing cation serves to compensate for charge dampening effects resulting from cation-framework interactions and thereby promotes stronger cation-H2 interactions.

4.
J Am Chem Soc ; 141(50): 19859-19869, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31697896

RESUMO

High-valent RuV-oxo intermediates have long been proposed in catalytic oxidation chemistry, but investigations into their electronic and chemical properties have been limited due to their reactive nature and rarity. The incorporation of Ru into the [Co3O4] subcluster via the single-step assembly reaction of CoII(OAc)2(H2O)4 (OAc = acetate), perruthenate (RuO4-), and pyridine (py) yielded an unprecedented Ru(O)Co3(µ3-O)4(OAc)4(py)3 cubane featuring an isolable, yet reactive, RuV-oxo moiety. EPR, ENDOR, and DFT studies reveal a valence-localized [RuV(S = 1/2)CoIII3(S = 0)O4] configuration and non-negligible covalency in the cubane core. Significant oxyl radical character in the RuV-oxo unit is experimentally demonstrated by radical coupling reactions between the oxo cubane and both 2,4,6-tri-tert-butylphenoxyl and trityl radicals. The oxo cubane oxidizes organic substrates and, notably, reacts with water to form an isolable µ-oxo bis-cubane complex [(py)3(OAc)4Co3(µ3-O)4Ru]-O-[RuCo3(µ3-O)4(OAc)4(py)3]. Redox activity of the RuV-oxo fragment is easily tuned by the electron-donating ability of the distal pyridyl ligand set at the Co sites demonstrating strong electronic communication throughout the entire cubane cluster. Natural bond orbital calculations reveal cooperative orbital interactions of the [Co3O4] unit in supporting the RuV-oxo moiety via a strong π-electron donation.


Assuntos
Cobalto/química , Hidrocarbonetos/química , Compostos Organometálicos/química , Compostos Organometálicos/isolamento & purificação , Oxigênio/química , Rutênio/química , Radicais Livres/química , Modelos Moleculares , Conformação Molecular
5.
J Am Chem Soc ; 141(45): 18325-18333, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31626542

RESUMO

Most C4 hydrocarbons are obtained as byproducts of ethylene production or oil refining, and complex and energy-intensive separation schemes are required for their isolation. Substantial industrial and academic effort has been expended to develop more cost-effective adsorbent- or membrane-based approaches to purify commodity chemicals such as 1,3-butadiene, isobutene, and 1-butene, but the very similar physical properties of these C4 hydrocarbons make this a challenging task. Here, we examine the adsorption behavior of 1-butene, cis-2-butene, and trans-2-butene in the metal-organic frameworks M2(dobdc) (M = Mn, Fe, Co, Ni; dobdc4- = 2,5-dioxidobenzene-1,4-dicarboxylate) and M2(m-dobdc) (m-dobdc4- = 4,6-dioxidobenzene-1,3-dicarboxylate), which all contain a high density of coordinatively unsaturated M2+ sites. We find that both Co2(m-dobdc) and Ni2(m-dobdc) are able to separate 1-butene from the 2-butene isomers, a critical industrial process that relies largely on energetically demanding cryogenic distillation. The origin of 1-butene selectivity is traced to the high charge density retained by the M2+ metal centers exposed within the M2(m-dobdc) structures, which results in a reversal of the cis-2-butene selectivity typically observed at framework open metal sites. Selectivity for 1-butene adsorption under multicomponent conditions is demonstrated for Ni2(m-dobdc) in both the gaseous and the liquid phases via breakthrough and batch adsorption experiments.


Assuntos
Alcenos/isolamento & purificação , Estruturas Metalorgânicas/química , Adsorção , Alcenos/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...