Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Orthop Res ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39032112

RESUMO

Progressive osteolysis can occur at the cement-bone interface of joint replacements and the associated loss of fixation can lead to clinical loosening. We previously developed a rat hemiarthroplasty model that exhibited progressive loss of fixation with the development of cement-bone gaps under the tibial tray that mimicked patterns found in human arthroplasty retrievals. Here we explored the ability of a bisphosphonate (zoledronic acid, ZA) to attenuate cement-bone osteolysis and maintain implant stability. Sprague-Dawley rats (n = 59) received a poly(methylmethacrylate) cemented tibial component and were followed for up to 12 weeks. Treatment groups included peri-operative administration of ZA (ZA group), administration of ZA at 6 weeks postop (late ZA group), or vehicle (Veh group). There was a 60% reduction in the rate of cement-bone gap formation for the ZA group (0.15 mm3/week) compared to Veh group (0.38 mm3/week, p = 0.016). Late ZA prevented further progression of gap formation but did not reverse bone loss to the level achieved in the ZA group. Micromotion from five times body weight toggle loading was positively correlated with cement-bone gap volume (p = 0.009) and negatively correlated with the amount of cement in the metaphysis (p = 0.005). Reduced new bone formation and enduring nonviable bone in the epiphysis for the ZA group were found. This suggests that low bone turnover in the epiphysis may suppress the early catabolic response due to implantation, thereby maintaining better fixation in the epiphysis. This preclinical model presents compelling supporting data documenting improved maintenance of the cement-bone fixation with the use of peri-operative bisphosphonates.

2.
J Orthop Res ; 40(12): 2843-2855, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35266584

RESUMO

Postradiotherapy bone fragility fractures are a frequent late-onset complication in cancer survivors. There is a critical need to develop preventative interventions, and the use of Food and Drug Administration-approved drugs remains an attractive option. Prior data from our lab and others have shown that parathyroid hormone [1-34] mitigates radiotherapy-induced bone loss, but only for the duration of drug delivery. Utilizing a murine hindlimb radiotherapy model, we investigated whether orchestrated delivery of single-dose zoledronic acid could extend these anabolic benefits after cessation of parathyroid hormone delivery. We then explored the potential use of parathyroid hormone as a bone marrow radioprotectant. While the addition of zoledronic acid to parathyroid hormone increased irradiated bone mass, there was no increase in femur bending strength. In this model, the parathyroid hormone was not effective as a marrow radioprotectant, although this could be due to the short course of parathyroid hormone treatment. Marrow repopulation kinetics differed from those in total body irradiation, with hematopoietic stem cell repopulation occurring relatively early at four weeks postirradiation. Furthermore, we found radiation induced a loss of marrow stromal cells and an increase in inflammatory monocytes. Statement of Clinical Significance: Staged delivery of parathyroid hormone and zoledronic acid shows promise as an off-the-shelf intervention to mitigate post-radiotherapy bone damage in cancer patients, but parathyroid hormone is unlikely to function as a broad-spectrum marrow radioprotectant.


Assuntos
Conservadores da Densidade Óssea , Doenças Ósseas Metabólicas , Humanos , Camundongos , Animais , Ácido Zoledrônico/farmacologia , Medula Óssea , Conservadores da Densidade Óssea/farmacologia , Hormônio Paratireóideo , Densidade Óssea , Doenças Ósseas Metabólicas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...