Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37461518

RESUMO

The ability to distinguish a threatening from non-threatening conspecific based on past experience is critical for adaptive social behaviors. Although recent progress has been made in identifying the neural circuits that contribute to different types of positive and negative social interactions, the neural mechanisms that enable the discrimination of individuals based on past aversive experiences remain unknown. Here, we developed a modified social fear conditioning paradigm that induced in both sexes robust behavioral discrimination of a conspecific associated with a footshock (CS+) from a non-reinforced interaction partner (CS-). Strikingly, chemogenetic or optogenetic silencing of hippocampal CA2 pyramidal neurons, which have been previously implicated in social novelty recognition memory, resulted in generalized avoidance fear behavior towards the equally familiar CS-and CS+. One-photon calcium imaging revealed that the accuracy with which CA2 representations discriminate the CS+ from the CS-animal was enhanced following social fear conditioning and strongly correlated with behavioral discrimination. Moreover the CA2 representations incorporated a generalized or abstract representation of social valence irrespective of conspecific identity and location. Thus, our results demonstrate, for the first time, that the same hippocampal CA2 subregion mediates social memories based on conspecific familiarity and social threat, through the incorporation of a representation of social valence into an initial representation of social identity.

2.
Neuron ; 111(14): 2232-2246.e5, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37192623

RESUMO

Although the hippocampus is crucial for social memory, how social sensory information is combined with contextual information to form episodic social memories remains unknown. Here, we investigated the mechanisms for social sensory information processing using two-photon calcium imaging from hippocampal CA2 pyramidal neurons (PNs)-which are crucial for social memory-in awake head-fixed mice exposed to social and non-social odors. We found that CA2 PNs represent social odors of individual conspecifics and that these representations are refined during associative social odor-reward learning to enhance the discrimination of rewarded compared with unrewarded odors. Moreover, the structure of the CA2 PN population activity enables CA2 to generalize along categories of rewarded versus unrewarded and social versus non-social odor stimuli. Finally, we found that CA2 is important for learning social but not non-social odor-reward associations. These properties of CA2 odor representations provide a likely substrate for the encoding of episodic social memory.


Assuntos
Região CA2 Hipocampal , Odorantes , Camundongos , Animais , Olfato/fisiologia , Hipocampo/fisiologia , Aprendizagem , Aprendizagem por Discriminação/fisiologia
3.
Nature ; 593(7857): 114-118, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33790466

RESUMO

Innate social behaviours, such as mating and fighting, are fundamental to animal reproduction and survival1. However, social engagements can also put an individual at risk2. Little is known about the neural mechanisms that enable appropriate risk assessment and the suppression of hazardous social interactions. Here we identify the posteromedial nucleus of the cortical amygdala (COApm) as a locus required for the suppression of male mating when a female mouse is unhealthy. Using anatomical tracing, functional imaging and circuit-level epistatic analyses, we show that suppression of mating with an unhealthy female is mediated by the COApm projections onto the glutamatergic population of the medial amygdalar nucleus (MEA). We further show that the role of the COApm-to-MEA connection in regulating male mating behaviour relies on the neuromodulator thyrotropin-releasing hormone (TRH). TRH is expressed in the COApm, whereas the TRH receptor (TRHR) is found in the postsynaptic MEA glutamatergic neurons. Manipulating neural activity of TRH-expressing neurons in the COApm modulated male mating behaviour. In the MEA, activation of the TRHR pathway by ligand infusion inhibited mating even towards healthy female mice, whereas genetic ablation of TRHR facilitated mating with unhealthy individuals. In summary, we reveal a neural pathway that relies on the neuromodulator TRH to modulate social interactions according to the health status of the reciprocating individual. Individuals must balance the cost of social interactions relative to the benefit, as deficits in the ability to select healthy mates may lead to the spread of disease.


Assuntos
Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/fisiologia , Preferência de Acasalamento Animal/fisiologia , Vias Neurais/fisiologia , Comportamento Social , Animais , Copulação/fisiologia , Complexo Nuclear Corticomedial/citologia , Complexo Nuclear Corticomedial/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Saúde , Ligantes , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Neurônios/metabolismo , Receptores do Hormônio Liberador da Tireotropina/metabolismo , Hormônio Liberador de Tireotropina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...