Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Inform ; 9(1): 26, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344713

RESUMO

The amount of unstructured text produced daily in scholarly journals is enormous. Systematically identifying, sorting, and structuring information from such a volume of data is increasingly challenging for researchers even in delimited domains. Named entity recognition is a fundamental natural language processing tool that can be trained to annotate, structure, and extract information from scientific articles. Here, we harness state-of-the-art machine learning techniques and develop a smart neuroscience metadata suggestion system accessible by both humans through a user-friendly graphical interface and machines via Application Programming Interface. We demonstrate a practical application to the public repository of neural reconstructions, NeuroMorpho.Org, thus expanding the existing web-based metadata management system currently in use. Quantitative analysis indicates that the suggestion system reduces personnel labor by at least 50%. Moreover, our results show that larger training datasets with the same software architecture are unlikely to further improve performance without ad-hoc heuristics due to intrinsic ambiguities in neuroscience nomenclature. All components of this project are released open source for community enhancement and extensions to additional applications.

2.
STAR Protoc ; 2(4): 100867, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34647039

RESUMO

We present a protocol to characterize the morphological properties of individual neurons reconstructed from microscopic imaging. We first describe a simple procedure to extract relevant morphological features from digital tracings of neural arbors. Then, we provide detailed steps on classification, clustering, and statistical analysis of the traced cells based on morphological features. We illustrate the pipeline design using specific examples from zebrafish anatomy. Our approach can be readily applied and generalized to the characterization of axonal, dendritic, or glial geometry. For complete context and scientific motivation for the studies and datasets used here, refer to Valera et al. (2021).


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Neurônios/citologia , Animais , Microscopia , Software , Peixe-Zebra
3.
Curr Biol ; 31(7): 1463-1475.e6, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33545047

RESUMO

Animals have a remarkable ability to use local cues to orient in space in the absence of a panoramic fixed reference frame. Here we use the mechanosensory lateral line in larval zebrafish to understand rheotaxis, an innate oriented swimming evoked by water currents. We generated a comprehensive light-microscopy cell-resolution projectome of lateralis afferent neurons (LANs) and used clustering techniques for morphological classification. We find surprising structural constancy among LANs. Laser-mediated microlesions indicate that precise topographic mapping of lateral-line receptors is not essential for rheotaxis. Recording neuronal-activity during controlled mechanical stimulation of neuromasts reveals unequal representation of water-flow direction in the hindbrain. We explored potential circuit architectures constrained by anatomical and functional data to suggest a parsimonious model under which the integration of lateralized signals transmitted by direction-selective LANs underlies the encoding of water-flow direction in the brain. These data provide a new framework to understand how animals use local mechanical cues to orient in space.


Assuntos
Sistema da Linha Lateral , Orientação Espacial , Peixe-Zebra , Animais , Larva , Mecanorreceptores
4.
Brain Inform ; 7(1): 2, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32219575

RESUMO

Research advancements in neuroscience entail the production of a substantial amount of data requiring interpretation, analysis, and integration. The complexity and diversity of neuroscience data necessitate the development of specialized databases and associated standards and protocols. NeuroMorpho.Org is an online repository of over one hundred thousand digitally reconstructed neurons and glia shared by hundreds of laboratories worldwide. Every entry of this public resource is associated with essential metadata describing animal species, anatomical region, cell type, experimental condition, and additional information relevant to contextualize the morphological content. Until recently, the lack of a user-friendly, structured metadata annotation system relying on standardized terminologies constituted a major hindrance in this effort, limiting the data release pace. Over the past 2 years, we have transitioned the original spreadsheet-based metadata annotation system of NeuroMorpho.Org to a custom-developed, robust, web-based framework for extracting, structuring, and managing neuroscience information. Here we release the metadata portal publicly and explain its functionality to enable usage by data contributors. This framework facilitates metadata annotation, improves terminology management, and accelerates data sharing. Moreover, its open-source development provides the opportunity of adapting and extending the code base to other related research projects with similar requirements. This metadata portal is a beneficial web companion to NeuroMorpho.Org which saves time, reduces errors, and aims to minimize the barrier for direct knowledge sharing by domain experts. The underlying framework can be progressively augmented with the integration of increasingly autonomous machine intelligence components.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...