Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 216(Pt 3): 114635, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309215

RESUMO

The emerging industrialization has resulted in the rapid growth of textile industries across the globe. The presence of xenobiotic pollutants in textile wastewater threatens the ecosystem. Applying different microbes (bacteria, fungi & algae) has paved the way for phytoremediation - the eco-friendly, cost-effective method. The present study focuses on the phytoremediation of reactive dyes - Reactive red, Reactive Brown & Reactive Black and Cr (VI) in synthetic textile wastewater using Salvinia sps. The mixed azo dyes of each 100 mg/L showed decolourization of 75 ± 0.5% and 82 ± 0.5% of removal of 20 mg/L of Cr (VI) after eight days of incubation in a phytoreactor setup. Chlorophyll analysis revealed the gradual decrease in the photosynthetic pigments during the remediation. The degraded metabolites were analyzed using FT-IR and showed the presence of aromatic amines on day zero, which were converted to aliphatic amines on day four. The GC-MS analysis revealed the disruption of -NN- bond, rupture of -CN- bond, scission of -N-N-bond, and loss of -SO3H from the Reactive Black dye leading to the formation of an intermediate p-Hydroxy phenylhydrazinyl. The rupture of Reactive red dye resulted in the formation of p-Hydrazinyl toluene sulphonic acid, Naphthyl amine -3,6-disulphonic acid and 8-Hydroxy Naphthyl amine -3,6-disulphonic acid. Decarboxylation, desulphonation, deoxygenation and deamination of Reactive Brown dye showed the presence of different metabolites and metabolic pathways were proposed for the reactive azo dyes which were phytoremediated.


Assuntos
Compostos Azo , Poluentes Químicos da Água , Compostos Azo/metabolismo , Águas Residuárias , Ecossistema , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise , Indústria Têxtil , Corantes/metabolismo , Biodegradação Ambiental , Têxteis , Aminas
2.
Chemosphere ; 287(Pt 3): 132280, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34571446

RESUMO

Scientific empowerment in this century created a positive and negative impact on the ecosystem's biotic and abiotic components. The current scenario of emerging recalcitrant pollutants in the environment is encountered using various remediation approaches are enforced and applied. The need for mineralization of the toxic pollutants to non - toxic forms accomplished the application of microbes (bacteria, fungi and algae) and plants individually or in a combined manner. The current research on the removal of pollutants from synthetic textile wastewater containing 1200 ppm concentration of mixed azo dyes -Reactive red (RR), Reactive Brown (RB) & Reactive Black (RBl) and 300 ppm Cr (VI) metal using haloalkaliphilic bacterial strains LBKVG1, LBKVG2, LBKVG3 & LBKVG4 in a Moving Bed Biofilm Reactor (MBBR), showed decolorization of 82 ± 0.5% of mixed azo dyes and degradation 56 ± 0.5% of Cr (VI) metal at 37 °C and pH 8.5 in the fifth day of the study. The isolated bacterial strains in the consortium were molecularly and morphologically characterized by 16SrRNA sequencing and SEM analysis. FT-IR and GC-MS analysis scrutinized the metabolites obtained. The findings suggest the degradation of hazardous pollutants even at higher concentrations and attempt to decolourize the mixed azo dyes simultaneously using the eco-friendly bacterial consortium.


Assuntos
Compostos Azo , Águas Residuárias , Bactérias/genética , Biodegradação Ambiental , Biofilmes , Reatores Biológicos , Cromo , Corantes , Ecossistema , Espectroscopia de Infravermelho com Transformada de Fourier , Têxteis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...