Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34640290

RESUMO

We aimed to determine the contribution of various trivalent ions like Al and rare-earths (Y, Nd, Sm, Eu) on resistance behaviors of different types of bismo-borate glasses. Accordingly, eight different bismuth borate glasses from the system: 40Bi2O3-59B2O3-1Tv2O3 (where Tv = Al, Y, Nd, Sm, and Eu) and three glasses of (40Bi2O3-60B2O3; 37.5Bi2O3-62.5B2O3; and 38Bi2O3-60B2O3-2Al2O3) compositions were extensively investigated in terms of their nuclear attenuation shielding properties, along with effective conductivity and buildup factors. The Py-MLBUF online platform was also utilized for determination of some essential parameters. Next, attenuation coefficients, along with half and tenth value layers, have been determined in the 0.015 MeV-15 MeV photon energy range. Moreover, effective atomic numbers and effective atomic weight, along with exposure and energy absorption buildup factors, were determined in the same energy range. The result showed that the type of trivalent ion has a direct effect on behaviors of bismo-borate glasses against ionizing gamma-rays. As incident photon energy increases, the effective thermal conductivity decreases rapidly, especially in the low energy range, where photoelectric effects dominate the photon-matter interaction. Sample 8 had the minimum heat conductivity at low photon energies; our findings showed that Eu-reinforced bismo-borate glass composition, namely 40Bi2O3-59B2O3-1Eu2O3, with a glass density of 6.328 g/cm3 had superior gamma-ray attenuation properties. These outcomes would be useful for the scientific community to observe the most suitable additive rareearth type and related glass composition for providing the aforementioned shielding properties, in terms of needs and utilization requirements.

2.
Materials (Basel) ; 14(14)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34300815

RESUMO

This study aimed to investigate different types of glasses based on the 46V2O5-46P2O5-(8-x) B2O3-xCuO system in terms of their nuclear radiation shielding properties. Accordingly, five different CuO-doped vanadate glasses were investigated extensively to determine the necessary gamma shielding parameters along with effective conductivity at 300,000 and buildup factors. Phy-x PSD software was used for determination of these vital parameters. Furthermore, these parameters, such as half value layer, tenth value layer, and mean free path were investigated in a broad energy range between 0.015 and 15 MeV. The results revealed that the amount of CuO reinforced in each sample plays an essential role in determination of the shielding abilities of the samples. The sample with the highest CuO content had the highest linear attenuation coefficient and mass attenuation coefficient values. Additionally, the lowest mean free path, half value layer, and tenth value layer values were recorded for glass sample VPCu8. There was an inverse relation between the effective conductivity and effective atomic number and photon energy; that is, as energy increases, the effective conductivity and effective atomic number decreased rapidly, especially in the regions of low energy. Glass sample VPCu8 reported the highest values for both parameters. Moreover, glass sample VPCu8 had the lowest exposure buildup factor and energy absorption buildup factor values. Our findings showed that CuO-reinforced vanadate glass composition, namely 46V2O5-46P2O5-8CuO, with a glass density of 2.9235 g/cm3, was reported to have superior gamma ray attenuation properties. These results would be helpful for scientists in determining the most appropriate additive rare earth type, as well as the most appropriate glass composition, to offer shielding characteristics similar to those described above, taking into consideration the criteria for usage and the needs of the community. The results of this research will be useful to the scientific community in evaluating the prospective characteristics of CuO-doped glass systems and related glass compositions. CuO-doped glass systems and associated glass compositions have a wide range of properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA