Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 19(6): 1882-1891, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35506592

RESUMO

Nanomedicines including lipid- and polymer-based nanoparticles and polymer-drug conjugates enable targeted drug delivery for the treatment of numerous diseases. Quantitative analysis of components in nanomedicines is routinely performed to characterize the products to ensure quality and property consistency but has been mainly focused on the active pharmaceutical ingredients (APIs) in academic publications. It has been increasingly recognized that excipients in nanomedicines are critical in determining the product quality, stability, consistency, and safety. APIs are often analyzed by high-performance liquid chromatography (HPLC), and it would be convenient if the same method can be applied to excipients to robustly quantify all components in nanomedicines. Here, we report the development of a HPLC method that combined an evaporative light scattering (ELS) detector with an UV-vis detector to simultaneously analyze drugs and excipients in nanomedicines. This method was tested on diverse nanodrug delivery systems, including a niosomal nanoparticle encapsulating a phytotherapeutic, a liposome encapsulating an immune boosting agent, and a PEGylated peptide. This method can be utilized for a variety of applications, such as monitoring drug loading, studying drug release, and storage stability. The information obtained from the analyses is of importance for nanomedicine formulation development.


Assuntos
Excipientes , Luz , Cromatografia Líquida de Alta Pressão/métodos , Excipientes/química , Lipossomos , Polímeros , Espalhamento de Radiação
2.
J Control Release ; 333: 151-161, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33771624

RESUMO

We demonstrated that phospholipid-free small unilamellar vesicles (PFSUVs) composed of TWEEN 80 and cholesterol (25/75, mol%) could be fabricated using a staggered herringbone micromixer with precise controlling of their mean size between 54 nm and 147 nm. Increasing the temperature or decreasing the flow rate led to an increase in the resulting particle diameter. In zebrafish embryos, 120-nm PFSUVs showed 3-fold higher macrophage clearance compared to the 60-nm particles, which exhibited prolonged blood circulation. In mice, the 60-nm particles showed dominant accumulation in the liver hepatocytes (66% hepatocytes positive), while the 120-nm particles were delivered equally to the liver and spleen macrophages. Accordingly, in a murine model of acetaminophen-induced hepatotoxicity the 60-nm particles loaded with chlorpromazine reduced the serum alanine aminotransferase level and liver necrosis 2- to 4-fold more efficiently than their 120-nm counterparts and the free drug, respectively. This work showed that the intra-liver distribution of PFSUVs was largely determined by the size. Most other nanoparticles published to date are predominantly cleared by the liver Kupffer cells. The 60-nm PFSUVs, on the other hand, focused the delivery to the hepatocytes with significant advantages for the therapy of liver diseases.


Assuntos
Fosfolipídeos , Lipossomas Unilamelares , Animais , Fígado , Camundongos , Temperatura , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...