Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1285052, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111585

RESUMO

Cannabinoids are a group of bioactive compounds abundantly present in Cannabis sativa plant. The active components of cannabis with therapeutic potential are known as cannabinoids. Cannabinoids are divided into three groups: plant-derived cannabinoids (phytocannabinoids), endogenous cannabinoids (endocannabinoids), and synthetic cannabinoids. These compounds play a crucial role in the regulation various physiological processes including the immune modulation by interacting with the endocannabinoid system (A complex cell-signaling system). Cannabinoid receptor type 1 (CB1) stimulates the binding of orexigenic peptides and inhibits the attachment of anorexigenic proteins to hypothalamic neurons in mammals, increasing food intake. Digestibility is unaffected by the presence of any cannabinoids in hemp stubble. Endogenous cannabinoids are also important for the peripheral control of lipid processing in adipose tissue, in addition to their role in the hypothalamus regulation of food intake. Regardless of the kind of synaptic connection or the length of the transmission, endocannabinoids play a crucial role in inhibiting synaptic transmission through a number of mechanisms. Cannabidiol (CBD) mainly influences redox equilibrium through intrinsic mechanisms. Useful effects of cannabinoids in animals have been mentioned e.g., for disorders of the cardiovascular system, pain treatment, disorders of the respiratory system or metabolic disorders. Dietary supplementation of cannabinoids has shown positive effects on health, growth and production performance of small and large animals. Animal fed diet supplemented with hemp seeds (180 g/day) or hemp seed cake (143 g/kg DM) had achieved batter performance without any detrimental effects. But the higher level of hemp or cannabinoid supplementation suppress immune functions and reduce productive performance. With an emphasis on the poultry and ruminants, this review aims to highlight the properties of cannabinoids and their derivatives as well as their significance as a potential feed additive in their diets to improve the immune status and health performance of animals.


Assuntos
Canabinoides , Cannabis , Animais , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Cannabis/química , Endocanabinoides , Dieta , Imunidade , Mamíferos
2.
Anim Biotechnol ; 34(2): 392-401, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34191667

RESUMO

Antibiotic resistance is looming problem in broiler production globally and there has been an increasing interest to look for sustainable alternatives to antibiotics. Yeast and its derived products are recognized as potential feed additives because of their beneficial impacts on poultry. Particularly, yeast exhibited positive effects on the humoral immunity by increasing serum immunoglobulin (Ig) A levels. Moreover, yeast and its products showed immune adjuvant-like properties that helped the broilers chicken to develop faster and stronger innate immune response under pathogenic challenges. Use of yeast and its products as prebiotic/probiotic improves the gut architecture mainly by improving the gut development and gut microbiome, reduction in colonization of pathogens through competitive exclusion, binding of toxins and enhancing digestion and absorption of nutrients. These unique properties of yeast and yeast products enhance animal welfare and productivity; warrant them to be used as a promising feed additive. This article, therefore, provides insights into the functional role of yeast and its products in the broiler diets and highlights its importance as a commercially viable alternative of synthetic antibiotic growth promoters in the broiler feed industry.


Assuntos
Probióticos , Saccharomyces cerevisiae , Animais , Galinhas , Dieta , Aves Domésticas , Antibacterianos
3.
Polymers (Basel) ; 14(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36365497

RESUMO

Advanced wireless communication technology claims miniaturized, reconfigurable, highly efficient, and flexible meta-devices for various applications, including conformal implementation, flexible antennas, wearable sensors, etc. Therefore, bearing these challenges in mind, a dual-band flexible metamaterial absorber (MMA) with frequency-reconfigurable characteristics is developed in this research. The geometry of the proposed MMA comprises a square patch surrounded by a square ring, which is mounted over a copper-backed flexible dielectric substrate. The top surface of the MMA is made of silver nanoparticle ink and a middle polyethylene terephthalate (PET) substrate backed by a copper groundsheet. The proposed MMA shows an absorption rate of above 99% at 24 and 35 GHz. In addition, the absorption features are also studied for different oblique incident angles, and it is found that the proposed MMA remains stable for θ = 10-50°. The frequency tunability characteristics are achieved by stimulating the capacitance of the varactor diode, which connects the inner patch with the outer ring. To justify the robustness and conformability of the presented MMA, the absorption features are also studied by bending the MMA over different radii of an arbitrary cylinder. Moreover, a multiple-reflection interference model is developed to justify the simulated and calculated absorption of the proposed MMA. It is found that the simulated and calculated results are in close agreement with each other. This kind of MMA could be useful for dual-band sensing and filtering operations.

4.
Nanomaterials (Basel) ; 12(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234486

RESUMO

The efficient control of optical light at the nanoscale level attracts marvelous applications, including thermal imaging, energy harvesting, thermal photovoltaics, etc. These applications demand a high-bandwidth, thermally robust, angularly stable, and miniaturized absorber, which is a key challenge to be addressed. So, in this study, the simple and cost-effective solution to attain a high-bandwidth nanostructured absorber is demonstrated. The designed nanoscale absorber is composed of a simple and plain circular ring of nickel metal, which possesses many interesting features, including a miniaturized geometry, easily fabricable design, large operational bandwidth, and polarization insensitivity, over the previously presented absorbers. The proposed nanoscale absorber manifests an average absorption of 93% over a broad optical window from 400 to 2800 nm. Moreover, the detailed analysis of the absorption characteristics is also performed by exciting the optical light's various incident and polarization angles. From the examined outcome, it is concluded that the nanostructured absorber maintains its average absorption of 80% at oblique incident angles in a broad wavelength range from 400 to 2800 nm. Owing to its appealing functionalities, such as the large bandwidth, simple geometry, low cost, polarization insensitivity, and thermal robustness of the constituting metal, nickel (Ni), this nano-absorber is made as an alternative for the applications of energy harvesting, thermal photovoltaics, and emission.

5.
J Opt Soc Am A Opt Image Sci Vis ; 39(1): 136-142, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35200983

RESUMO

The inherent bandwidth limitations make it quite challenging to achieve the wideband response of metamaterial absorbers. In this paper, a metamaterial absorber based on triangular metallic rings has been proposed to attain wideband absorption (>90%) in the wavelength span of 400-750 nm. The absorber is constituted of periodically placed unit cells, where each unit cell contains three concentric triangular chromium metal rings. The absorption of the design remains stable (above 70%) over a wide range of incidence obliquity (0°-60°) under transverse electric (TE) and transverse magnetic (TM) polarization. Further, the absorber shows polarization-insensitive behavior over different polarization states. The low-cost and thermally endurable chromium metal, wide absorption, and wide-angle stability make the proposed absorber a suitable candidate for applications like solar energy harvesting, solar detectors, solar thermal photovoltaics, and photonic devices.

6.
Chem Biol Interact ; 354: 109821, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35051378

RESUMO

Arsenic has recently received widespread attention due to its high toxicological effects on multiple animals; however, the mechanism underlying this toxicity is unclear. We investigated the damaging effects of arsenic trioxide (ATO) on hepatocytes and the effects of regulating autophagy on the hepatocyte damage induced by ATO exposure. First, we investigated the effects of ATO exposure (0, 0.6, 1.2, 2.4, and 4.8 µM) on the biochemical function and autophagy of chicken hepatocytes. The findings showed that as the concentration of ATO increased, the lactate dehydrogenase (LDH) concentration increased, more autophagosomes were observed via transmission electron microscopy (TEM), and the gene and protein expression levels of P62, LC3Ⅱ, and Beclin1 increased. Adding N-acetyl-l-cystine (NAC, 1 mM) attenuated autophagy and the hepatocyte damage induced by ATO. Then, we used rapamycin (Rapa) and 3-methylpurine (3-MA) to regulate the autophagy induced by exposure to 4.8 µM ATO and observed changes in the antioxidant capacity and apoptosis rate of chicken hepatocytes. Induction of autophagy reduced ATO-induced hepatocyte apoptosis but caused no significant effect on oxidative stress in chicken hepatocytes. Inhibition of autophagy exacerbated ATO-induced hepatocyte oxidative stress and apoptosis. These findings demonstrate that autophagy plays an important role in ATO-induced cell damage.


Assuntos
Trióxido de Arsênio
7.
Anim Biotechnol ; 33(5): 941-954, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33325302

RESUMO

The effects of inclusion of powdered seeds of black cumin (B) (Nigella sativa L.) and fenugreek (F) (Trigonella foenum-graecum L.) on productive traits, selected blood constituents, microbiota and immunity of broilers were studied. A total of 648 day-old chicks were randomly assigned to nine treatments, with four pen replicates, each with 18 birds, including three levels of B seed powder (BSP; 0, 5 or 10 g/kg) and three levels of F seed powder (FSP; 0, 5 or 10 g/kg) in a 3 × 3 factorial arrangement. Neither powder affected feed intake. The FSP increased (p = 0.048) feed conversion ratio (FCR), but decreased daily BW gain (p = 0.02) between days 0 and 21, while BSP increased daily gain between days 22 and 42 and overall (both p = 0.005). Abdominal fat was decreased (p = 0.003) by BSP. Blood constituents were unaffected by either powder, but ileal Escherichia coli were decreased (p = 0.039) at day 42. The BSP increased a range of immunological titers, where BSP affected positively the measured variables. The interactions between BSP and FSP, specifically on broiler carcass cuts, suggested that where BSP is included at 10 g/kg, the inclusion of FSP at the same level may provide no additional benefit. Thus, while either powder could be included separately, the co-inclusion of both at 10 g/kg is not recommended.


Assuntos
Microbiota , Nigella sativa , Trigonella , Ração Animal/análise , Animais , Galinhas , Dieta/veterinária , Pós
8.
Appl Opt ; 60(29): 9160-9166, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34623998

RESUMO

Terahertz (THz) metamaterial absorbers have realized a prodigious reputation due to the limitation of natural absorbing materials in this range. Getting wideband absorption characteristics is challenging and arduous, especially in the THz band. Self-similar repeated fractal elements offer a promising solution to attain broadband absorption response due to their inherent multiple resonance characteristics. Therefore, by captivating the advantage of fractal geometry, we proposed a dual and wideband meta-absorber operating in the THz regime. The metamaterial absorber design comprises the assembly of self-similar square-shaped blocks arranged in a specific pattern to construct the fractal geometry. The proposed THz absorber demonstrates 90% absorption under normal incident waves for two operating bands from 9.5-10.55 THz and 12.3-13.35 THz. The suggested metamaterial absorber also shows good and stable absorption responses under different oblique incidence angles for transverse electric (TE) and transverse magnetic (TM) wave polarization. Moreover, this absorber manifests over 85% absorptivity in its entire operating range (9-14 THz) under the incidence angle of 60° and 70° for TM mode. Furthermore, it gives a polarization-insensitive behavior under the effect of different polarization angles. This kind of wideband absorber catches fascinating applications in THz detection, imaging, cloaking, and optoelectronic devices.

9.
J Therm Biol ; 99: 102944, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34420608

RESUMO

Environmental changes pose significant threats to agricultural activities particularly animal production. These changes have induced major concerns which will negatively affect the poultry health and productivity under the current climate changes. Moreover, they also alter the immunological status of the exposed birds and make them susceptible to different diseases. The adverse effects of environmental stress also include poor performance of birds (reduced feed intake, growth, feed efficiency, immunity, and egg production) and inferior product quality. The adverse effect of heat stress on different quail breeds like Japanese quail, bobwhite quail, scaled quail, and Gambel's quail ranged from decreased growth rates (11.0-14.5%), body weight (7.7-13.2%), feed intake (6.1-21.6%), feed efficiency (4.3-8.6%), and egg production (6.6-23.3%). Also, birds reared under heat stress (34 °C) had significantly decreased Haugh units by 10.8% and egg weight by 14.3% in comparison with the control group (reared at 22 °C). On the other hand, increasing stoking density from 30 to 45 kg/m2 also negatively affected the feed intake and body weight. Recent studies have focused on evaluating the potential adverse effects of different environmental stresses on poultry performance, behavior, welfare, and reproduction. It is imperative to understand better the interaction of different environmental factors and their subsequent effects on avian physiology, to spotlights on the effective management and nutritional strategies to alleviate the adverse effects of different stresses in poultry. This review aims to present a comprehensive overview of physiological manifestations of major environmental stresses including thermal stress (heat and cold stress) and high stocking densities on poultry health and production. Moreover, we have also critically evaluated the scope and efficacy of some potential strategies to mitigate the influences of these environmental stressors in different poultry species.


Assuntos
Criação de Animais Domésticos , Resposta ao Choque Frio , Aglomeração , Resposta ao Choque Térmico , Aves Domésticas/fisiologia , Animais
10.
Toxicology ; 461: 152906, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34450209

RESUMO

Fluoride is one of the most widely distributed elements in nature, while some fluorine-containing compounds are toxic to several vertebrates at certain levels. The current study was performed to evaluate the nephrotoxic effects of fluoride exposure in ducks. The results showed that the renal index was decreased in NaF group, and fluoride exposure significantly decreased the levels of serum Albumin, Glucose, Total cholesterol, Urea, protein and Triglycerides, confirming that NaF exhibited adverse effects on the kidney. The overall structure of renal cells showed damage with the signs of nuclelytic, vacuolar degeneration, atrophy, renal cystic cavity widening after fluoride induction. Renal vascular growth was impaired as the expression of VEGF and HIF-1α decreased (p > 0.05). More importantly, autophagy and apoptosis levels of CYT C, LC3, p62, Beclin, M-TOR, Bax and Caspase-3 were increased (p < 0.05) in the NaF treated group. Interestingly, our results showed that Phosphatidylethanolamine (PE) and Phosphatidylcholine (PC) activated the M-TOR autophagy pathway. Meanwhile, the PE acted on Atg5/ LC3 autophagy factor, followed by the auto-phagosome generation and activation of cell autophagy. These results indicate that NaF exposure to duck induced nephron-toxicity by activating autophagy, apoptosis and glucolipid metabolism pathways, which suggest that fluorine exposure poses a risk of poisoning.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Rim/efeitos dos fármacos , Fluoreto de Sódio/toxicidade , Animais , Patos , Glicolipídeos/metabolismo , Rim/citologia , Rim/patologia , Nefropatias/induzido quimicamente , Nefropatias/patologia , Fluoreto de Sódio/administração & dosagem
11.
Ecotoxicol Environ Saf ; 212: 111968, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33550083

RESUMO

Despite the fact that copper (Cu) is a vital micronutrient to maintain body function, high doses of Cu through environmental exposure damage various organs, especially the liver, which is the main metabolic organ. To investigate the influence of long-term Cu-induced toxicity on mitophagy and apoptosis in rat liver, 96 seven-month-old male Sprague-Dawley rats were fed TBCC for 24 weeks. The results revealed that exposure to high Cu concentrations could promote oxidative stress liver injury by increasing the hepatic function index (ALT, AST and ALP) and MDA content, while reducing the activity of antioxidant enzymes (T-SOD, GSH-Px and CAT) related to oxidative stress. Consistent with histopathological observations, proper dietary Cu (15-60 mg/kg) could improve antioxidant stress levels and induce a dose-dependent increase in the mRNA expression of mitophagy-related genes, whereas a high Cu concentration (120 mg/kg) could cause severe liver impairment and ultrastructural changes and a reduction in mitophagosomes, accompanied by downregulation of Atg5, Beclin1, Pink1, Parkin, NIX, P62 and LC3B. The expression of apoptosis-related genes (Bax, Bax/Bcl-2, Caspase3, Cytc and p53) and proteins (Caspase3 and p53) was upregulated with the addition of dietary Cu. The results demonstrated that an appropriate dose of TBCC could improve liver function by promoting mitophagy and Cu enzymes that play antioxidative roles, while the accumulation of excess Cu could induce liver lesions by enhancing apoptosis and inhibiting mitophagy pathways.


Assuntos
Cloretos/toxicidade , Cobre/toxicidade , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Sulfato de Cobre/análise , Dieta , Fígado/metabolismo , Masculino , Mitofagia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Testes de Toxicidade Crônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...