Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35522635

RESUMO

This article presents an imaging probe with a 256-element ultrawideband (UWB) 1-D capacitive micromachined ultrasonic transducer (CMUT) array designed for acoustic angiography (AA). This array was fabricated on a borosilicate glass wafer with a reduced bottom electrode and an additional central plate mass to achieve the broad bandwidth. A custom 256-channel handheld probe was designed and implemented with integrated low-noise amplifiers and supporting power circuitry. This probe was used to characterize the UWB CMUT, which has a functional 3-dB frequency band from 3.5 to 23.5 MHz. A mechanical index (MI) of 0.33 was achieved at 3.5 MHz at a depth of 11 mm. These promising measurements are then combined to demonstrate AA. The use of alternate amplitude modulation (aAM) combined with a frequency analysis of the measured transmit signal demonstrates the suitability of the UWB CMUT for AA. This is achieved by measuring only a low level of unwanted high-frequency harmonics in both the transmit signal and the reconstructed image in the areas other than the contrast bubbles.


Assuntos
Transdutores , Ultrassom , Angiografia , Desenho de Equipamento , Ultrassonografia/métodos
2.
IEEE Trans Biomed Circuits Syst ; 15(4): 705-718, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34398764

RESUMO

A 2D ultrasonic array is the ultimate form of a focused ultrasonic system, which enables electronically focusing beams in a 3D space. A 2D array is also a versatile tool for various applications such as 3D imaging, high-intensity focused ultrasound, particle manipulation, and pattern generation. However, building a 2D system involves complicated technologies: fabricating a 2D transducer array, developing a pitch-matched ASIC, and interconnecting the transducer and the ASIC. Previously, we successfully demonstrated 2D capacitive micromachined ultrasonic transducer (CMUT) arrays using various fabrication technologies. In this paper, we present a 2D ultrasonic transmit phased array based on a 32 × 32 CMUT array flip-chip bonded to a pitch-matched pulser ASIC for ultrasonic neuromodulation. The ASIC consists of 32 × 32 unipolar high-voltage (HV) pulsers, each of which occupies an area of 250 µm × 250 µm. The phase of each pulser output is individually programmable with a resolution of 1/fC/16, where fC is less than 10 MHz. This enables the fine granular control of a focus. The ASIC was fabricated in the TSMC 0.18- µm HV BCD process within an area of 9.8 mm × 9.8 mm, followed by a wafer-level solder bumping process. After flip-chip bonding an ASIC and a CMUT array, we identified shorted elements in the CMUT array using the built-in test function in the ASIC, which took approximately 9 minutes to scan the entire 32 × 32 array. A compact-form-factor wireless neural stimulator system-only requiring a connected 15-V DC power supply-was also developed, integrating a power management unit, a clock generator, and a Bluetooth Low-Energy enabled microcontroller. The focusing and steering capability of the system in a 3D space is demonstrated, while achieving a spatial-peak pulse-average intensity ( ISPPA) of 12.4 and 33.1 W/ cm2; and a 3-dB focal volume of 0.2 and 0.05 mm3-at a depth of 5 mm-at 2 and 3.4 MHz, respectively. We also characterized transmission of ultrasound through a mouse skull and compensated the phase distortion due to the skull by using the programmable phase-delay function in the ASIC, achieving 10% improvement in pressure and a tighter focus. Finally, we demonstrated a ultrasonic arbitrary pattern generation on a 5 mm × 5 mm plane at a depth of 5 mm.


Assuntos
Ultrassom , Dispositivos Eletrônicos Vestíveis , Animais , Desenho de Equipamento , Camundongos , Transdutores , Ultrassonografia
3.
Artigo em Inglês | MEDLINE | ID: mdl-32759081

RESUMO

This article presents a row-column (RC) capacitive micromachined ultrasonic transducer (CMUT) array fabricated using anodic bonding on a borosilicate glass substrate. This is shown to reduce the bottom electrode-to-substrate capacitive coupling. This subsequently improves the relative response of the elements when top or bottom electrodes are used as the "signal" (active) electrode. This results in a more uniform performance for the two cases. Measured capacitance and resonant frequency, pulse-echo signal amplitude, and frequency response are presented to support this. Biasing configurations with varying ac and dc arrangements are applied and subsequently explored. Setting the net dc bias voltage across an off element to zero is found to be most effective to minimize spurious transmission. To achieve this, a custom switching circuit was designed and implemented. This circuit was also used to obtain orthogonal B-mode cross-sectional images of a rotationally asymmetric target.

4.
Artigo em Inglês | MEDLINE | ID: mdl-32746179

RESUMO

This study demonstrates, in detail, the potential of using capacitive micromachined ultrasonic transducers (CMUTs) for acoustic angiography of the microvasculature. It is known that when ultrasound contrast agents (microbubbles) are excited with moderate acoustic pressure around their resonance (2-4 MHz), they produce higher order harmonics (greater than third harmonic) due to their nonlinear behavior. To date, the fundamental challenge has been the availability of a transducer that can generate the transmit signals to excite the microbubbles at low frequencies and, in the same cycle, confocally detect harmonics in the higher frequencies. We present a novel device structure and dual-mode operation of a CMUT that operates with a center frequency of 4.3 MHz and 150% bandwidth in the conventional mode for transmitting and a center frequency of 9.8 MHz and a 125.5% bandwidth in collapse mode for receiving. Output pressure of 1.7 MPapp is achieved on the surface of a single unfocused transducer. The mechanical index at the transducer surface is 0.56. FEM simulations are performed first to show the functionality of the proposed device, and then, the device fabrication is described in detail. Finally, we experimentally demonstrate the ability to detect the microbubble signals with good contrast, and the background reflection is adequately suppressed, indicating the feasibility of the presented approach for acoustic angiography.


Assuntos
Angiografia , Transdutores , Ultrassonografia , Angiografia/instrumentação , Angiografia/métodos , Meios de Contraste , Desenho de Equipamento , Análise de Elementos Finitos , Microbolhas , Imagens de Fantasmas , Ultrassonografia/instrumentação , Ultrassonografia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...