Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 431(2): 189-200, 2001 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-11728425

RESUMO

The present studies were designed to assess whether the novel muscarinic M(2) receptor antagonist 4-cyclohexyl-alpha-[4[[4-methoxyphenyl]sulphinyl]-phenyl]-1-piperazineacetonitrile (SCH 57790) could increase acetylcholine release in the central nervous system (CNS) and enhance cognitive performance in rodents and nonhuman primates. In vivo microdialysis studies show that SCH 57790 (0.1-10 mg/kg, p.o.) produced dose-related increases in acetylcholine release from rat hippocampus, cortex, and striatum. SCH 57790 (0.003-1.0 mg/kg) increased retention times in young rat passive avoidance responding when given either before or after training. Also, SCH 57790 reversed scopolamine-induced deficits in mice in a passive avoidance task. In a working memory operant task in squirrel monkeys, administration of SCH 57790 (0.01-0.03 mg/kg) improved performance under a schedule of fixed-ratio discrimination with titrating delay. The effects observed with SCH 57790 in behavioral studies were qualitatively similar to the effects produced by the clinically used cholinesterase inhibitor donepezil, suggesting that blockade of muscarinic M(2) receptors is a viable approach to enhancing cognitive performance.


Assuntos
Acetilcolina/metabolismo , Cognição/efeitos dos fármacos , Antagonistas Muscarínicos/farmacologia , Piperazinas/farmacologia , Receptores Muscarínicos/efeitos dos fármacos , Animais , Pressão Sanguínea/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células CHO , Cricetinae , Frequência Cardíaca/efeitos dos fármacos , Masculino , Camundongos , Microdiálise , Estrutura Molecular , Piperazinas/química , Ratos , Ratos Sprague-Dawley , Receptor Muscarínico M2 , Saimiri , Escopolamina/farmacologia , Fatores de Tempo
2.
Bioorg Med Chem Lett ; 11(17): 2311-4, 2001 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-11527721

RESUMO

The potential toxicological liabilities of the M(2) muscarinic antagonist 1 were addressed by replacing the methylenedioxyphenyl moiety with a p-methoxyphenyl group, resulting in M(2) selective compounds such as 3. Several halogenated naphthamide derivatives of 3 were studied in order to improve the pharmacokinetic profile via blockage of oxidative metabolism. Compound 4 demonstrated excellent M(2) affinity and selectivity, human microsomal stability, and oral bioavailability in rodents and primates.


Assuntos
Compostos de Benzilideno/química , Dioxóis/química , Dioxóis/farmacologia , Antagonistas Muscarínicos/química , Antagonistas Muscarínicos/farmacologia , Receptores Muscarínicos/efeitos dos fármacos , Sulfonas/química , Sulfonas/farmacologia , Acetilcolina/análise , Acetilcolina/metabolismo , Administração Oral , Animais , Área Sob a Curva , Compostos de Benzilideno/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Estabilidade de Medicamentos , Humanos , Macaca fascicularis , Microdiálise , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Antagonistas Muscarínicos/sangue , Ratos , Receptor Muscarínico M2 , Relação Estrutura-Atividade
3.
Farmaco ; 56(4): 247-50, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11421251

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive impairment and personality changes. The development of drugs for the treatment of the cognitive deficits of AD has focused on agents which counteract loss in cholinergic activity. Although symptoms of AD have been successfully treated with acetylcholinesterase inhibitors (tacrine, donepezil. rivastigmine, galanthamine), limited success has been achieved with direct M1 agonists, probably due to their lack of selectivity versus other muscarinic receptor subtypes. Muscarinic M2 antagonists have been reported to increase synaptic levels of acetylcholine after oral administration to rats (e.g. BIBN-99, SCH-57790), but their selectivity versus other muscarinic receptor subtypes is modest. Exploration of a series of piperidinylpiperidines has yielded the potent and selective M2 antagonist SCH-217443. This antagonist has excellent bioavailability in rats and dogs and shows activity in a rat model of cognition.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Agonistas Muscarínicos/uso terapêutico , Antagonistas Muscarínicos/uso terapêutico , Animais , Humanos , Agonistas Muscarínicos/química , Antagonistas Muscarínicos/química , Relação Estrutura-Atividade
4.
Life Sci ; 68(22-23): 2585-92, 2001 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-11392630

RESUMO

Current treatment of Alzheimer's Disease (AD) requires acetylcholinesterase inhibition to increase acetylcholine (ACh) concentrations in the synaptic cleft. Another mechanism by which ACh levels can be increased is blockade of presynaptic M2 muscarinic autoreceptors that regulate ACh release. An antagonist designed for this purpose must be highly selective for M2 receptors to avoid blocking postsynaptic M1 receptors, which mediate the cognitive effects of ACh. Structure-activity studies of substituted methylpiperadines led to the synthesis of 4-[4-[1(S)-[4-[(1,3-benzodioxol-5-yl)sulfonyl]phenyl]ethyl]-3(R)-methyl-1-piperazinyl]-4-methyl-1-(propylsulfonyl)piperidine. This compound, SCH 72788, binds to cloned human M2 receptors expressed in CHO cells with an affinity of 0.5 nM, and its affinity at M1 receptors is 84-fold lower. SCH 72788 is a functional M2 antagonist that competitively inhibits the ability of the agonist oxotremorine-M to inhibit adenylyl cyclase activity. In an in vivo microdialysis paradigm, SCH 72788 increases ACh release from the striatum of conscious rats. The compound is also active in a rodent model of cognition, the young rat passive avoidance response paradigm. The effects of SCH 72788 suggest that M2 receptor antagonists may be useful for treating the cognitive decline observed in AD and other dementias.


Assuntos
Acetilcolina/metabolismo , Antagonistas Muscarínicos/farmacologia , Piperazinas/farmacologia , Piperidinas/farmacologia , Receptores Muscarínicos/metabolismo , Sinapses/efeitos dos fármacos , Adenilil Ciclases/metabolismo , Doença de Alzheimer/tratamento farmacológico , Animais , Células CHO , Cricetinae , Relação Dose-Resposta a Droga , Humanos , Cinética , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Estrutura Molecular , Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/síntese química , Antagonistas Muscarínicos/metabolismo , Antagonistas Muscarínicos/uso terapêutico , Oxotremorina/farmacologia , Piperazinas/síntese química , Piperazinas/metabolismo , Piperazinas/uso terapêutico , Piperidinas/síntese química , Piperidinas/metabolismo , Piperidinas/uso terapêutico , Ensaio Radioligante , Ratos , Receptor Muscarínico M2 , Transdução de Sinais/fisiologia , Sinapses/metabolismo
7.
Bioorg Med Chem Lett ; 10(19): 2209-12, 2000 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-11012031

RESUMO

Piperidine analogues of our previously described piperazine muscarinic antagonists are described. Piperidine analogues show a distinct structure-activity relationship (SAR) that differs from comparable piperazines. Compounds with high selectivity and improved potency for the M2 receptor have been identified. The lead compound, 12b, increases acetylcholine release in vivo. Compounds of this class may be useful for the treatment of cognitive disorders such as Alzheimer's disease (AD).


Assuntos
Antagonistas Muscarínicos/síntese química , Antagonistas Muscarínicos/farmacologia , Piperidinas/síntese química , Piperidinas/farmacologia , Receptores Muscarínicos/metabolismo , Acetilcolina/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Estrutura Molecular , Antagonistas Muscarínicos/química , Piperidinas/química , Ratos , Receptor Muscarínico M2 , Relação Estrutura-Atividade
9.
J Pharmacol Exp Ther ; 273(1): 273-9, 1995 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-7714776

RESUMO

Muscarinic autoreceptors located on cholinergic nerve terminals are involved in the inhibitory feedback regulation of acetylcholine (ACh) release. Establishing the subtype identity of such sites provides a more complete understanding of both normal receptor function and the functional significance of receptor changes associated with various neurodegenerative diseases. In this study, a novel approach was used to identify the muscarinic autoreceptor in rat striatum. It involved the correlation of data from two different sources--in vivo microdialysis and in vitro receptor binding. Four standard muscarinic antagonists with varying binding profiles (scopolamine, pirenzepine, AF-DX116 and himbacine) were infused directly through a microdialysis probe into the striatum of conscious, freely moving rats. The objectives were to find the minimal concentration of each antagonist capable of manifesting a functional autoreceptor response (i.e., increased ACh release) and to compare the relative ability of the antagonists to bring about this effect with their relative abilities to bind to each of the cloned muscarinic receptor subtypes. The conclusion is that the muscarinic receptor mediating ACh release in rat striatum exhibits a pharmacological profile clearly consistent with it being of the m2 subtype.


Assuntos
Autorreceptores/classificação , Corpo Estriado/química , Receptores Muscarínicos/classificação , Acetilcolina/metabolismo , Animais , Ligação Competitiva , Masculino , Microdiálise , Antagonistas Muscarínicos/farmacologia , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley
10.
J Pharmacol Exp Ther ; 245(3): 829-38, 1988 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-3164388

RESUMO

SCH 34826 [(S)-N-[N-[1-[[(2,2-dimethyl-1,3-dioxolan-4yl) methoxy]carbonyl]-2-phenylethyl]-L-phenylalanine]-beta-alanine] was synthesized as a p.o. active prodrug enkephalinase inhibitor. In vivo, it is de-esterified to SCH 32615 (N-[L-(-1-carboxy-2-phenyl)ethyl]-L-phenylalanyl-beta-alanine), the active constituent. In vitro, the Ki for SCH 32615 to block the degradation of Met5-enkephalin by isolated enkephalinase is 19.5 +/- 0.9 nM. In contrast, SCH 32615 did not inhibit aminopeptidase or diaminopeptidase III degradation of Met5-enkephalin up to 10 microM and did not affect angiotensin converting enzyme up to 10 microM. In vivo, p.o. administered SCH 34826 potentiated the analgesic effects of D-Ala2-Met5-enkephalinamide in mice (ED50 = 5.3 mg/kg p.o.) and rats [minimal effective dose (MED) = 1 mg/kg p.o.]; SCH 32615 had no effect up to 30 mg/kg p.o., but was active parenterally (ED50 in mice = 1.4 ng/kg sc). Direct, naloxone-reversible analgesic effects of SCH 34826 were demonstrated in the mouse low temperature hot-plate test (MED = 30 mg/kg p.o.), the mouse acetic acid-induced writhing test (MED = 30 mg/kg p.o.), the rat stress-induced analgesia test (MED = 10 mg/kg p.o.) and the modified rat yeast-paw test (MED = 100 mg/kg p.o.). Using the rat D-Ala2-Met5-enkephalinamide potentiation test the duration of action of SCH 34826 was at least 4 hs. No respiratory or gastrointestinal side effects of any consequence were noted at doses up to 100 times those active in the D-Ala2-Met-5-enkephalinamide potentiation test.


Assuntos
Analgésicos/farmacologia , Dioxolanos/farmacologia , Dioxóis/farmacologia , Dipeptídeos/farmacologia , Metaloendopeptidases/antagonistas & inibidores , Administração Oral , Animais , Sinergismo Farmacológico , Encefalina Metionina/análogos & derivados , Encefalina Metionina/metabolismo , Encefalina Metionina/farmacologia , Motilidade Gastrointestinal/efeitos dos fármacos , Masculino , Camundongos , Naloxona/farmacologia , Neprilisina , Ratos , Respiração/efeitos dos fármacos
11.
Life Sci ; 42(2): 179-87, 1988.
Artigo em Inglês | MEDLINE | ID: mdl-2892106

RESUMO

Quazepam and 2-oxo-quazepam are novel benzodiazepines containing a trifluoroethyl substituent on the ring nitrogen at position #1. Detailed competition binding experiments (25 to 30 concs.) at 4 degrees C were undertaken with these compounds versus 3H-flunitrazepam using synaptic membranes from rat cortex or cerebellum. Unlike other benzodiazepines, both quazepam and 2-oxo-quazepam distinguished two populations of 3H-flunitrazepam binding sites in rat cortex which were present in roughly equal proportions and for which the compounds displayed a greater than 20-fold difference in affinity. In cerebellum, no such discrimination of sites was noted for 2-oxo-quazepam, but quazepam did distinguish a small, low affinity (15% of total) population of sites. 3H-2-oxo-quazepam was prepared and used in competition studies to substantiate the conclusion that these compounds discriminate two populations of benzodiazepine sites in rat cortex. This new radioligand was shown to specifically label BZ binding sites with high affinity in a saturable manner. The competition experiments were then conducted using 3H-2-oxo-quazepam at a radioligand concentration sufficiently low (0.5 nM) to ensure that only the higher affinity binding sites which 2-oxo-quazepam discriminates would be occupied. Competition experiments in both cortex and cerebellum under these conditions indicated single site binding for unlabelled quazepam and 2-oxo-quazepam in every instance. This suggests that 3H-2-oxo-quazepam should be a useful new tool for selectively labeling and studying the BZ1 population of benzodiazepine binding sites.


Assuntos
Ansiolíticos/farmacologia , Benzodiazepinas/farmacologia , Benzodiazepinonas/farmacologia , Receptores de GABA-A/metabolismo , Animais , Benzodiazepinas/metabolismo , Benzodiazepinonas/metabolismo , Ligação Competitiva , Córtex Cerebral/metabolismo , Flunitrazepam/metabolismo , Cinética , Masculino , Ratos , Ratos Endogâmicos , Receptores de GABA-A/efeitos dos fármacos , Membranas Sinápticas/metabolismo
12.
Eur J Pharmacol ; 128(3): 249-53, 1986 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-2878816

RESUMO

Inhibitory activities of a series of analogs of SCH 23390 ((R)-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3- benzazepine) in which the 7-chloro group was substituted by bromo, fluoro, methyl and methoxy groups, respectively, were compared in three tests for D1 and DA1 dopamine (DA) receptor antagonism: inhibition of DA-induced renal vasodilation in the anesthetized dog (DA1 receptor model), inhibition of DA-stimulated adenylate cyclase in the striatum of adult female rats (D1 receptor model) and displacement of [3H]SCH 23390 in the striatal homogenates of male rats. In addition the D2 receptor affinity of each of the compounds chosen was assessed via displacement of [3H]spiperone binding from rat striatum. S-enantiomers of the Cl and CH3 analogs were 200- to 700-fold weaker than the respective R-enantiomers in all three tests. The activity of all the R-enantiomers was in the nanomolar range and varied no more than 8-fold in all three tests. The F analog in the ligand binding test was the only exception, which was 30-fold weaker than the C1 analog. All of the R-enantiomers studied showed much weaker affinity for the D2 receptor, as assessed by displacement of [3H]spiperone binding. Similar enantiomer selectivity and parallel affinities of the R-enantiomers in the prototype models for D1 and DA1 receptors strengthen the evidence in support of identity between the D1 and DA1 dopamine receptors. These results further indicate that displacement of SCH 23390 in the ligand binding test reflects affinity of a compound for D1 and DA1 dopamine receptors.


Assuntos
Antipsicóticos/farmacologia , Benzazepinas/farmacologia , Receptores Dopaminérgicos/efeitos dos fármacos , Adenilil Ciclases/metabolismo , Anestesia , Animais , Ligação Competitiva/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Técnicas In Vitro , Masculino , Ratos , Ratos Endogâmicos , Estereoisomerismo
15.
Life Sci ; 35(18): 1885-93, 1984 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-6387355

RESUMO

A novel benzazepine, SCH 23390, has recently been described as a very potent and selective dopamine D-1 receptor antagonist based on its potent inhibition of dopamine sensitive adenylate cyclase and its selective displacement of 3H-piflutixol from rat striatal receptor sites. In the present study, the in vitro binding of 3H-SCH 23390 to specific striatal receptor sites has been characterized. Binding was saturable and stereospecific, and the results of both saturation and competition studies are consistent with the binding of 3H-SCH 23390 to a single striatal site. A KD of 0.53 nM was obtained through Scatchard analysis. Relative potencies of a variety of neuroleptics in competing with 3H-SCH 23390 and also 3H-spiperone support an interpretation that the single site to which 3H-SCH 23390 binds is the D-1 dopamine receptor. Also, the binding capacity of 3H-SCH 23390 (69 pmoles/gm wet weight) is in agreement with published values for the binding capacities of 3H-piflutixol and 3H-flupentixol. These data, coupled with the low level of non-specific binding encountered with this radioligand (4-8% of total binding at normally employed ligand concentration of 0.3 nM), its high specific activity and its negligible binding to plastic and glass surfaces make it ideally suited for studying interactions with this receptor.


Assuntos
Benzazepinas/metabolismo , Corpo Estriado/metabolismo , Receptores Dopaminérgicos/metabolismo , Animais , Ligação Competitiva , Cinética , Masculino , Ratos , Ratos Endogâmicos , Espiperona/metabolismo , Relação Estrutura-Atividade
16.
Life Sci ; 35(1): 105-13, 1984 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-6738302

RESUMO

In binding studies with rat brain membranes, 1,4-benzodiazepines containing a trifluoroethyl moeity at the 1-N position, including halazepam and quazepam, had significantly higher affinities for binding sites in cerebellum than in cortex. This selectivity for cerebellar sites is not a property of benzodiazepines without the trifluoroethyl moiety, but is similar to that seen with the triazolopyridazines. Since halazepam and quazepam, like the triazolopyridazines, have behavioral effects in animals at doses much lower than those that cause ataxia, it is tempting to attribute this separation of pharmacologic activities to differential activity at subpopulations of benzodiazepine receptors. Further work is necessary to clarify this possibility.


Assuntos
Ansiolíticos , Benzodiazepinas/metabolismo , Cerebelo/metabolismo , Animais , Benzodiazepinonas/metabolismo , Córtex Cerebral/metabolismo , Fenômenos Químicos , Química , Diazepam/metabolismo , Hipocampo/metabolismo , Masculino , Ratos , Ratos Endogâmicos
17.
Eur J Pharmacol ; 102(1): 151-4, 1984 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-6383841

RESUMO

Insulin administration to rats produced a dose-related hypoglycemia. When insulin and the enkephalinase (Enk'ase) inhibitor thiorphan (30 or 100 mg/kg s.c.) were co-administered, there was a potentiation of the hypoglycemic response to insulin; these doses of thiorphan alone had no significant effect on plasma glucose. When tested in vitro against isolated Enk'ase, both insulin and its beta-chain inhibited the catabolism of [Met5]enkephalin. Theoretically, thiorphan blocked the catabolism of insulin by inhibiting Enk'ase. Alternatively, thiorphan acted as an inhibitor of another insulin-catabolizing enzyme having similar substrate requirements as Enk'ase.


Assuntos
Aminoácidos Sulfúricos/farmacologia , Glicemia/metabolismo , Insulina/farmacologia , Inibidores de Proteases , Tiopronina/farmacologia , Animais , Encéfalo/enzimologia , Sinergismo Farmacológico , Encefalina Metionina/farmacologia , Masculino , Neprilisina , Ratos , Ratos Endogâmicos , Tiorfano , Tiopronina/análogos & derivados
18.
Peptides ; 3(1): 31-5, 1982.
Artigo em Inglês | MEDLINE | ID: mdl-6952174

RESUMO

Subplantar injection of Brewer's yeast induces a hyperalgesia that is associated with an increase in the level of striatal Met-enkephalin (ME); there was no change in the hypothalamus of periaqueductal gray. To test the relationship between striatal ME and analgesia, naloxone (10, 3, 0.5 mg/kg, SC) or thiorphan (100 micrograms, ICV) were administered. Neither drug caused a potentiation or a reduction in the hypersensitivity. These data suggest that an increase in striatal does not result in altered pain sensitivity in this model.


Assuntos
Analgesia , Encéfalo/metabolismo , Endorfinas/metabolismo , Encefalinas/metabolismo , Fermento Seco/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Corpo Estriado/metabolismo , Encefalina Metionina , Hiperalgesia/induzido quimicamente , Masculino , Naloxona/farmacologia , Ratos , Ratos Endogâmicos , Tiorfano , Tiopronina/análogos & derivados , Tiopronina/farmacologia
20.
Antimicrob Agents Chemother ; 5(1): 19-24, 1974 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-4840446

RESUMO

The addition of 5 mM dithiothreitol to a cell-free assay system for influenza ribonucleic acid (RNA) polymerase activity reverses the inhibitory activity otherwise possessed by three established antiviral compounds: selenocystine, 4-(2-propinyloxy)-beta-nitrostyrene, and acetylaranotin. Although 50% or greater enzyme inhibitory activity is repeatedly achieved for these compounds at a concentration of approximately 50 mug/ml (0.1 to 0.25 mM) in the absence of dithiothreitol, no inhibition is seen in its presence at inhibitor concentrations as high as 200 mug/ml. Against the deoxyribonucleic acid-directed RNA polymerases of Escherichia coli and chicken embryo cells, acetylaranotin and 4-(2-propinyloxy)-beta-nitrostyrene caused very little inhibition. Only selenocystine significantly inhibited these two enzymes in the absence of reducing agent, but to an extent substantially less than that obtained against the viral enzyme. These results appear to suggest that influenza RNA polymerase is uniquely sensitive to a variety of structurally diverse antiviral compounds as a consequence of their sulfhydryl reactivity-a fact which might aid in the search for and development of more potent chemotherapeutic agents.


Assuntos
Antivirais/farmacologia , Cistina/farmacologia , Oxepinas/farmacologia , Piperazinas/farmacologia , Selênio/farmacologia , Estirenos/farmacologia , Reagentes de Sulfidrila/farmacologia , Alcinos/farmacologia , Sistema Livre de Células , Fenômenos Químicos , Química , RNA Polimerases Dirigidas por DNA , Dissulfetos/farmacologia , Ditiotreitol/farmacologia , Nitrocompostos/farmacologia , Compostos Organosselênicos , Orthomyxoviridae/enzimologia , RNA Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...