Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 14601, 2018 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-30279433

RESUMO

We investigate ablation of CVD monolayer graphene by femtosecond pulses in the single shot regime. We show that the ablation probability of flat graphene drastically reduces for small illumination diameters even if the ablation threshold is exceeded. However, the presence of graphene wrinkles enhances the ablation probability. This is interpreted in terms of electron and energy diffusion within the graphene layer. This differentiated behavior is a drawback for single shot laser nanopatterning. The morphology of the holes with minimal diameter depends on the fluence distribution at ablation threshold. Strong fluence gradients due to strong focussing produce an explosive folding of graphene during ablation.

2.
Opt Express ; 25(8): 9312-9317, 2017 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28438007

RESUMO

We develop a novel concept for ultra-high speed cleaving of crystalline materials with femtosecond lasers. Using Bessel beams in single shot, fracture planes can be induced nearly all along the Bessel zone in sapphire. For the first time, we show that only for a pulse duration below 650 fs, a single fracture can be induced in sapphire, while above this duration, cracks appear in all crystallographic orientations. We determine the influential parameters which are polarization direction, crystallographic axes and scanning direction. This is applied to cleave sapphire with a spacing as high as 25 µm between laser impacts.

3.
Opt Express ; 13(9): 3236-41, 2005 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-19495224

RESUMO

We report the complete characterization of the self-similar scaling of parabolic pulse similaritons in an optical fiber amplifier. High dynamic range frequency resolved optical gating allows the direct observation of the evolution of a hyperbolic secant-like input pulse to an asymptotic amplifier similariton, and reveals the presence of intermediate asymptotic wings about the parabolic pulse core. These results are used to optimize additional self-similar propagation in highly-nonlinear fiber and subsequent compression in hollow-core photonic bandgap fiber.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...