Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38610436

RESUMO

Due to increasing urbanization, nowadays, cities are facing challenges spanning multiple domains such as mobility, energy, environment, etc. For example, to reduce traffic congestion, energy consumption, and excessive pollution, big data gathered from legacy systems (e.g., sensors not conformant with modern standards), geographic information systems, gateways of public administrations, and Internet of Things technologies can be exploited to provide insights to assess the current status of a city. Moreover, the possibility to perform what-if analyses is fundamental to analyzing the impact of possible changes in the urban environment. The few available solutions for scenario definitions and analyses are limited to addressing a single domain and providing proprietary formats and tools, with scarce flexibility. Therefore, in this paper, we present a novel scenario model and editor integrated into the open-source Snap4City.org platform to enable several processing and what-if analyses in multiple domains. Different from state-of-the-art software, the proposed solution responds to a series of identified requirements, implements NGSIv2-compliant data models with formal descriptions of the urban context, and a scenario versioning method. Moreover, it allows us to carry out analyses on different domains, as shown with some examples. As a case study, a traffic congestion analysis is provided, confirming the validity and usefulness of the proposed solution. This work was developed in the context of CN MOST, the National Center on Sustainable Mobility in Italy, and for the Tourismo EC project.

2.
Sensors (Basel) ; 24(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38257534

RESUMO

The number of data sources and models in the mobility and transport domain strongly proliferated in the last decade. Most formats have been created to enable specific and innovative applications. On the other hand, the available data models present a certain degree of complexity in terms of their integration and management due to partial overlaps, and in most cases, they could be exploited alternatively to implement the same smart and latest innovative solutions. This paper offers an overview of data models, standards and their relationships. A second contribution highlights any possible exploitation of data models for implementing operational processes for city transportation management and for the feeding of simulation and optimization processes that produce other data results in other data models. The final goal in most cases is the monitoring and control of city transport conditions, as well as the tactic and strategic planning of city infrastructure. This work was developed in the context of the CN MOST, a national center of sustainable mobility in Italy, and it is based on exploiting the Snap4City platform.

3.
Sensors (Basel) ; 22(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35591078

RESUMO

CO2 emissions from burning fossil fuels make a relevant contribution to atmospheric changes and climate disruptions. In cities, the contribution by traffic of CO2 is very relevant, and the general CO2 estimation can be computed (i) on the basis of the fuel transformation in energy using several factors and efficiency aspects of engines and (ii) by taking into account the weight moved, distance, time, and emissions factor of each specific vehicle. Those approaches are unsuitable for understanding the impact of vehicles on CO2 in cities since vehicles produce CO2 depending on their specific efficiency, producer, fuel, weight, driver style, road conditions, seasons, etc. Thanks to today's technologies, it is possible to collect real-time traffic data to obtain useful information that can be used to monitor changes in carbon emissions. The research presented in this paper studied the cause of CO2 emissions in the air with respect to different traffic conditions. In particular, we propose a model and approach to assess CO2 emissions on the basis of traffic flow data taking into account uncongested and congested conditions. These traffic situations contribute differently to the amount of CO2 in the atmosphere, providing a different emissions factor. The solution was validated in urban conditions of Florence city, where the amount of CO2 is measured by sensors at a few points where more than 100 traffic flow sensors are present (data accessible on the Snap4City platform). The solution allowed for the estimation of CO2 from traffic flow, estimating the changes in the emissions factor on the basis of the seasons and in terms of precision. The identified model and solution allowed the city's distribution of CO2 to be computed.

4.
Sensors (Basel) ; 20(18)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971888

RESUMO

In recent years, there is an increasing attention on air quality derived services for the final users. A dense grid of measures is needed to implement services such as conditional routing, alerting on data values for personal usage, data heatmaps for Dashboards in control room for the operators, and for web and mobile applications for the city users. Therefore, the challenge consists of providing high density data and services starting from scattered data and regardless of the number of sensors and their position to a large number of users. To this aim, this paper is focused on providing an integrated solution addressing at the same time multiple aspects: To create and optimize algorithms for data interpolation (creating regular data from scattered), making it possible to cope with the scalability and providing support for on demand services to provide air quality data in any point of the city with dense data. To this end, the accuracy of different interpolation algorithms has been evaluated comparing the results with respect to real values. In addition, the trends of heatmaps interpolation errors have been exploited to detected devices' dysfunctions. Such anomalies may often be useful to request a maintenance action. The solution proposed has been integrated as a Micro Services providing data analytics in a data flow real time process based on Node.JS Node-RED, called in the paper IoT Applications. The specific case presented in this paper refers to the data and the solution of Snap4City for Helsinki. Snap4City, which has been developed as a part of Select4Cities PCP of the European Commission, and it is presently used in a number of cities and areas in Europe.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...